
aval Research Laboratory
ashington, DC 20375-5000

NRL Report 9167

Implementing Recurrent Back-Propagation
on the Connection Machine

E. M. DEPRIT

Concept Development Branch
Spacecraft Engineering Department

December 2, 1988

Approved for public release; distribution unlimited.

SECURITY CLASSIFCATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

la1 REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARK NGS

UNCLASSIFIED
2a. SECURITY CLAS;IFICAT ON AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

2b DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

NRL Report 9167

6a. NAME OF PERFORMING ORGANIZATION Sb. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION1- (If applirable)
Naval Research Laboratory (ICode 8342

Sc. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Washington, DC 20375-5000

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
Office of Naval Research

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22217 ELEMENT NO NO NO ACCESSION NO.

._______________________________________ .61153N14 RRO14-02-41 DN155-017
11. TITLE (Include Security Classification)

Implementing Recurrent Back-Propagation on the Connection Machine

12. PERSONAL AUTHOR(S)

Deprit, E. M.
13a. TYPE OF REPORT 1 3b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Final I FROM . . TO _ 1988 December 2 112
16 SUPPLEMENTARY NOTATION

17. COSATI CODES 1B SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Neural networks

Recurrent back-propagation
Connection Machine

19 ABST I RACT I (Continue on reverse it necessary and identity by block number)

Pineda's Recurrent Back-Propagation algorithm for neural networks has been implemented on the Connection
Machine, a massively parallel processor. Two fundamentally different graph architectures underlying the nets were
tested-one based on arcs, the other on nodes. Confirming the predominance of communication over computation, per-
formance measurements underscore the necessity to make connections the basic unit of representation. Comparisons
between these graphs algorithms lead to important conclusions concerning the parallel implementation of neural nets in
both software and hardware.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

i0UNCLASSIFIED/UNLIMITED El SAME AS RPT El DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

E. M. Deprit (202) 767-2818 Code 8242

DD Form 1473, JUN 86 Previous editions are obsolete.

S/N 0102-LF-014-6603
SECURITY CLASSIFICATION OF THIS PAGE

CONTENTS

1. INTRODUCTION

2. RECURRENT BAC

3. NETTALK ARCHY

4. TOMBOULIAN AD

5. PERFORMANCE

6. CONCLUSIONS

7. ACKNOWLEDGM]

8. REFERENCES..

APPENDIX A - Samp]

Al Nettalk Archit-

A2 Tomboulian Ai

APPENDIX B - Timin

APPENDIX C - *Lisp

'K-PROPAGATION 2

FECTURE 5

ACHITECTURE 9

.. I.................................... I 15

.................................. 19

ENTS 20

............................. 20

.e Nets 23

ecture 23

tchitecture 26

gs 29

Code for Nettalk Implementation 37

APPENDIX D - *Lisp Code for Tomboulian Implementation

ii

65

IMPLEMENTING RECURRENT BACK-PROPAGATION
ON THE CONNECTION MACHINE

1. INTRODUCTION

The recent resurgence in connectionist models of cognition has been spurred by exciting ad-
vances in parallel computing. As computational models of cognition, neural networks appear par-
ticularly well suited to fine-grained parallel processing. Researchers exploit powerful new parallel
processors to push the bounds of size and speed in their models. Indeed, this process must logi-
cally lead to implementation of massively parallel networks in Very Large-Scale Integrated (VLSI)
technology.

The Connection Machine (CM) provides a unique test-bed for the exploration of neural network
models and their underlying graph architectures. The CM is a "Single Instruction Multiple Data"
(SIMD) parallel processor. It consists of up to 64K one-bit processors arranged in a 16-dimensional
hypercube [1]. The processors communicate through a flexible connection scheme, allowing the
machine to be configured readily to match the structure of the problem [2]. By spreading the
problem data over the entire set of processors in a proper manner, CM programs may exceed the
performance of conventional supercomputers like the Cray-2 or the ETA-10.

Among the many computational paradigms for neural networks, recurrent back-propagation
(RBP) presents unique advantages for parallel implementations in both software and hardware.
The algorithm is due to Pineda [3,4]. It treats a neural network as a dynamical system where
the behavior of the network obeys a system of coupled differential equations without making any
distinction between input and output nodes. Thus, RBP can obviously be rendered in parallel since
the network's global behavior results from homogeneous nodes performing only local computations.

Furthermore, by requiring the network to perform integrations where only the steady state
solutions are of interest, the RBP may be realizable in analog, rather than more complicated
digital VLSI technology. In analog circuitry, the network would reach steadystate asynchronously
after the presentation of inputs; whereas in digital circuitry, complex synchronization would control
the integration of the feed-forward equations. Studying the behavior and implementation details
of this algorithm on the CM will give insights to the problems facing the designers of a neural
network chip.

This report presents two implementations of the RBP algorithm on the CM. The first one
uses the graph architecture proposed by Rosenberg and Blelloch [5] for Nettalk. In their scheme,
connections constitute the basic unit of representation, with most of the processors in the CM
acting as connections rather than units. The results from Nettalk show that extremely large nets
may be simulated by taking advantage of the unique routing and virtual processor features of the
CM [6,7].

1

Manuscript approved September 12, 1988.

E. M. DEPRIT

The scheme of Rosenberg and Blelloch, however, relies heavily on the sophisticated routing
hardware of the CM. Thus, another implementation was tried where nodes form the basis of
representation. Graph algorithms developed by Tomboulian [8,9] provide a method for embedding
and using arbitrary directed graphs on SIMD machines much less capable than the CM. Tomboulian
considers a network architecture of exceedingly simple processors, smart memories, which can
communicate only through connections to a small set of nearest neighbors. In this regard, the
Tomboulian algorithms may provide a link from a general parallel processor implementation to a
possible hardware implementation of RBP. Having done away with the need for the complicated
routing hardware of the CM, one could now think of building a network of smart memories coded
to act as a neural net, all residing on a single chip.

By comparing these two schemes, one is able to draw conclusions concerning the parallel imple-
mentation of RBP in both software and hardware. The questions to be examined are the relative
importance of computation and communication and the effectiveness of net representations based
on either connections or nodes. These questions of graph representation must be answered if neural
networks are to be realized successfully in VLSI technology.

Section 2 reviews the RBP equations for both continuous mapping and associative memory
nets. In Section 3 the original Nettalk scheme is extended to the general connectivity nets of RBP.
In Section 4, Tomboulian's graph algorithm is extended to apply it as a basis for communications in
RBP nets. Section 5 presents timing experiments performed on both implementations, and Section
6 draws conclusions concerning the effectiveness of these two schemes and their implications in
regard to hardware implementations of neural networks.

2. RECURRENT BACK-PROPAGATION

In contrast with Rumelhart, Hinton, and Williams [10] who specify the S algorithm for discrete,
feed-forward networks, Pineda [3,4] treats neural networks as dynamical systems, more precisely
as continuous dynamical systems with arbitrary connectivity. The behavior of these recurrent
networks is governed by systems of coupled differential equations.

A continuous mapping net consists of input units, hidden units, and output units. Input signals
are delivered to the input units; the differential equations propagate the signals through the net.
The purpose is to obtain the activation levels at the output units.

For the feed-forward equations, Pineda takes the differential system

dx =-xi + f(us) + Ii,

where f(() is the logistic function (1 + e-)-. Without the nonlinearity introduced by the logistic
function, the network could learn only linear maps. The variable xi represents the activity of the
ith neuron; Is is the input (= 0 if the neuron is not an input unit). The coupling among neurons
is introduced at the ith neuron by the term

ui = AwijxJ.

Pineda chooses the right-hand members so that the solution tends to a constant value x43 for any
choice of the initial conditions.

2

NRL REPORT 9167

The network is trained to learn a given mapping from a set of input vectors (Ii) to a set of target
vectors (Ti). The weights (wij) are adapted by least-squares fit to minimize the error function

E(xi) = 2
i

where Ji is equal to ti - xi if i is an output unit, to 0 otherwise. This is done by gradient descent
on the error function; thus the weights are adjusted in a direction opposite the gradient of the error
function according to

tiE
dt - w~ij

The learning rate 71 must be between 0 and 1. Normally small values for ij are chosen to ensure that
the gradient descent converges; nonetheless it must be said that larger values of ij may speed the
learning. The difficulty resides in obtaining the partial derivatives &E/awij,. Pineda proposes to
do it locally by defining a second system of differential equations to propagate the error corrections
throughout the net.

In the back-propagation equations,

dyi
dt = Yi + f (ui))(V + Ji),

where
U= wij Zo and vi = Ewriyr

3 r

while Ji = ti- xi if i is an output unit, 0 otherwise. Pineda proves that the gradient update is
such that

dwi did= 717iox°°

yjT being the steady state for the error signal at the jth unit. Let w7nJ be the weight on the
connection between units i and j after n training iterations. To begin with, wos is chosen at
random in a small interval around zero. Then, Aw75 is the weight change specified by the nth
iteration, and the next iteration adopts for weights the quantities

wflt = w%'- + 1 A\Wf± + a A wn71

Adding the momentum term a AWr- 1 , where a is chosen empirically between 0 and 1, was first
proposed by Rumelhart, Hinton, and Williams with the suggestion that it damps out oscillations
and keeps the weight corrections going in one direction, thereby speeding up convergence in the
network.

In addition to continuous mapping nets, associative memory nets will be processed in the CM.
An associative memory net consists of visible and hidden units. The input and output of the
net is read from the activation levels of the visible units. In this scheme, a master network and
a slave network have the same topology and share the same weight space. The master network,
obeying a constrained dynamical system, is trained on a set of target vectors representing the
memories to be stored. The slave network is not trained; it is used to recall the stored memories.
Perturbed versions of the memories are presented to the visible units, the slave network is allowed
to reach steady state, and the original stored inputs are recovered. Thus the slave network has
the same dynamics as a continuous mapping net, and the dynamics of the master network must

3

E. M. DEPRIT

be constrained to allow introduction of several basins of attraction (fixed points) into the weight
space.

The feed-forward equations for the master net have the form

dxi + f (U),
di

where us = Ejwijzj with zj constrained to be tj if j is a visible unit, otherwise equal to the
activation level xj if j is a hidden unit. In accordance with this definition, the modified back-
propagation equation for the correction signal at the ith unit becomes

dti i + f-(Ui)(OiHvi + Ji)

with vi = r Wr,iyr. The difference between the target value and the activation level Ji is either
ti- xi if i is a visible unit or 0 if i is a hidden unit. To ensure that correction signals are received
only from hidden units and not from visible units, one introduces the factor ZW, which is either 0
if i is a visible unit or 1 if i is a hidden unit.

Similar modifications to the continuous mapping case yield the gradient update in the master
net:

dwi,3 cc Z00
dt = rYs I,

where yi° and zj are respectively the constrained activation level of the ith unit and the correction
signal of the jth unit, both in the steady state. Obviously, the weight update equation takes the
same form as for the continuous mapping net.

The slave net in turn is characterized by the unconstrained dynamical system

di = + f (u),

similar to that of the continuous mapping net.

The same RBP routines serve for both types of nets on the CM since only small modifica-
tions separate the equations for the continuous mapping from those for the associative memory.
Admittedly, the RBP algorithm requires numerical integration of coupled systems of differential
equations. Nevertheless, these equations converge rapidly; moreover, only their steady state solu-
tions are of interest. Hence, however crude, the Euler method suffices to quickly solve feed-forward,
back-propagation, and weight update equations.

The numerical integration depends critically on the solutions of the differential equations con-
verging rapidly to steady-state solutions. The well-behaved nature of these equations also points
out the usefulness of RBP for VLSI implementation. The feed-forward and back-propagation equa-
tions could be realized by analog circuitry. Inputs would be presented to the feed-forward circuits,
and the output would be read after the circuit reaches equilibrium -eliminating the need for
digital circuitry to enforce timing constraints.

4

NRL REPORT 9167

3. NETTALK ARCHITECTURE

As previously mentioned, the simple homogeneous computations of the RBP algorithm lend
themselves quite naturally to parallel processing. Nevertheless, considering the enormous combi-
natorial complexity inherent to a neural net, special attention must be paid to the representation
of the net inside the computer. This report offers two representation schemes. The first is based
on Rosenberg and Blelloch's implementation of Nettalk. Through their close association with re-
searchers at Thinking Machines Corporation, these authors gained an intimate understanding of
the insides of the CM. As a matter of fact, one cannot appreciate the architecture for Nettalk
without understanding pertinent details about communications and virtual processors as handled
by a CM.

In the CM, processors communicate in several ways. The basic ones are the router and the
scan operations. Through the router, processors read from the memory of any other processor
or write into it. The principal power of the CM lies in the router; it makes of the machine a
gigantic telephone system in which processors can communicate by knowing each other's cube
address, that is, their phone number. This centrex becomes a computer thanks to the the routing
cycle that combines multiple values sent to a single processor according to various logical and
arithmetic operations. The router, however, trades speed for flexibility. In problems where the
communications pattern is localized, the scan operations provide a generally faster communications
scheme. In scanning, values in contiguous segments of processors are easily copied or summed. In
general, the scan operations operate more quickly than do the router operations.

Another important feature of the CM is the ability to use virtual processors. Although a full
CM contains only 64K physical processors, each physical processor may be multiplexed into some
power of two virtual processors. Virtualization of the machine is accomplished in microcode and is
invisible to the applications programmer. Consequently problems requiring more processors than
physically available may still run on the machine. An interesting side effect of the virtualization
is that communication operations become more efficient for higher virtual processor (VP) ratios.
A machine running a VP ratio of 4 will probably execute code less than 4 times as slowly; the
reason is that more communication operations are performed on-chip. This increased efficiency is
especially true with scan operations. In particular, scan operations become very advantageous for
simulating large networks when the CM is configured with high VP ratios.

The Nettalk scheme represents nets in the CM with one processor per unit and two processors
per connection. Each connection corresponds to a fan-out weight from its source unit and a fan-in
weight to its destination unit. There is a processor for the fan-in weight and another one for the
fan-out weight, and each unit is preceded by its fan-in weights and followed by its fan-out weights.
Processors in a fan-in/fan-out pair are linked through their processor address so that values may
be passed by a global send operation. This interleaving of weights and units allows one to take
advantage of the very fast segmented scan operations provided by the CM. Figure 1 shows the layout
of a very simple or-net on the machine. The Nettalk scheme as originally designed by Rosenberg
and Blelloch considered only feed-forward, layered networks, but this Nettalk architecture extends
naturally to the general connectivity nets treated by RBP. This extension is made obvious in Fig.
1 where, at the bias node e, one of the fan-out weights feeds back to a fan-in weight.

Construction of these nets may seem daunting at first glance, but actually it is simple because
of the powerful sorting facilities on the CM. The net is built by first loading in all fan-in weights,
then loading the processors representing units, and finally loading the fan-out weights. Next, the

5

E. M. DEPRIT

processors in the net are ranked according to the following key -either the unit address for units,
the to-unit address for fan-in weights, or the from-unit address for fan-out weights. The sorting
operation in this case is very fast because the CM performs all sorts in logarithmic time. In the
final step of the construction the units, fan-in weights and fan-out weights are rearranged according
to the ranking produced by the sort. Figure 2 shows the construction steps on the standard net
introduced in Fig. 1. The reshuffling involved in the last step is the most time-consuming part
of the construction operation, since many bits of information must be communicated through the
machine by a general router cycle. Nonetheless the scheme allows extremely large nets to be
constructed in a matter of seconds.

An explanation of the feed-forward cycle in Nettalk will serve to motivate the interleaving
scheme of fan-in and fan-out units. Although the RBP feed-forward equation is solved, units must
propagate their activation levels to all connected units. First, all units "copy-scan" their activation
levels to their fan-out weights for the latter processors to form the product W o X. With a general
"send" operation, the fan-out weight sends the result to their corresponding fan-in weights. A
"plus-scan" operation then sums these activation values into the units. Thereafter, the next step
in the numerical integration is performed locally in each unit. The integration loop is repeated
until a steady state solution is reached. Figure 3 details the cycle of copy-scan, send, and plus-scan
that is central to the solution of the feed-forward equations. Moreover, Fig. 4 exhibits the *Lisp
[11] code that implements the algorithm. As expected, the solution of the back-propagation follows
a similar pattern, with correction signals being propagated backward from units to their connected
units. The weight update equation is solved in each of the fan-out weights, which are designated
to hold the value W for each connection.

The original Nettalk dealt exclusively with layered, feed-forward networks. In that elementary
case, it is possible to simultaneously pipeline the activation levels forward and the error signals
backwards from layer to layer, hence the phenomenal throughput achieved by Rosenberg and
Blelloch. Unfortunately, this savings appears impossible to realize in the general case of recurrent
nets. It is easy to understand why. The network must reach equilibrium for a single input vector
before the next one is presented; similarly, the error signals must reach steady state for a single
target vector before a new one is considered. One might also object that it is singularly wasteful
of processors -two processors are required for each connection. The fan-in weights and fan-out
weights could be collapsed into a single processor but at the cost of an extra routing step in the
feed-forward and back-propagation cycles. In fact, performance requires spreading out the net
across as many processors as possible and relying on the virtualization mechanism to provide the
necessary resources.

6

NRL REPORT 9167

a

C e

Ifi an-out weight

El fan-in weight

processors
0 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16

omom0999u099o9oMOD
c

units
d

Fig. 1- Nettalk architecture adapted to accomodate the recurrent node
"e". The figure published by Rosenberg and Blelloch has been modified for
the recurrent net.

Before

processors
0 1 2 3 4 5 6 7 8 9 10 i1 12 13 14 15 16

BBBBBoo o o o o m m m
unit a b c d e
to c c d c d e c c d c d e
from a b c e e e a b c e e e

unit for units
sort on key - to unit for fan-ins

from unit for fan-outs
After

processors
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

oUo00Bo mB0roro0m
unit a b c d e
to c c c c c d d d e e d c
froro a b a b e c c e e e e e

Fig. 2 - Shuffling of processors after sorting on key

7

E. M. DEPRIT

0 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 I5 16

0 la 0 m B B E 0 CM El El 0 E 0 0 0 m
a b c d e

I) units copy-scan X to fan-outs, U = WLX

0 El 0 m1 E0 U11 F71 0 nE El a] Em
a A h |c I. T d e | l

((2) fan-outs send U to fan-Ins)

a d_ e

(3) fan-ins plus-scan u to units

Fig. 3- The feed-forward cycle in a Nettalk architecture. The figure is
drawn according to the conventions adopted by Rosenberg and Blelloch.

(defun feed-forward (net input!! &key latched-p)

(*all

(*when netp!!

(*when unitp!!

(*set I!! (!! 0.0) X!! (!! 0.5) dX!! C!! 0.5))

(*when inputp!!

(if (memory-netp net)

(*set X!! (the float-pvar input!!))

(*set I!! (the float-pvar input!!))))

(*set Z!! X!!))

(*set Z!! (scan!! Z!! 'copy!! :segment-pvar forward-fan-out-seg!!))

(do ()

((*when unitp!! (*and (<!! (abs!! dX!!) epsilon-x!!))))

(dotimes (i (net-x-iterations net))

(*when fan-outp!!

(*set U!! (*!! W!! Z!!))

(2) -> (*pset :no-collisions U! U!! to-addr!!))

(*when unitp!! (*set U!! (!! 0.0)))

(3) -> (*set U!! (scan!! U!! '+!! :segment-pvar forward-fan-in-seg!!))

(*when unitp!!

(*set LogU!! (logistic!! U!!)

dX!! (+!! (*!! a!! (-!! X!!)) (*!! b!! LogU!!) I!!)

X!! C+!! X!! dX!!)

Z!! X!!)

(if latched-p
(*when inputp!! (*set Z!! (the float-pvar input!!)))))

(i) -> (*set Z!! (scan!! Z!! 'copy!! :segment-pvar forward-fan-out-seg!M))

Fig. 4 -*Lisp function for the Nettalk feed-forward cycle. The numbered pointers highlight the forms
realizing the three basic steps of the cycle.

8

NRL REPORT 9167

4. TOMBOULIAN ARCHITECTURE

Beside Nettalk, another type of graph architecture should be considered. The plan is to compare
the respective advantages of these methods in regard to their implementation on a massively parallel
processor.

As does Nettalk, Tomboulian [8,9] deals with directed graphs. By contrast with Nettalk, she
intends to embed them in arbitrary SIMD network architectures, restricting herself to nearest-
neighbor connections for communications. Her design makes assumptions on the graphs and on
the SIMD hardware. In regard to the graphs, Tomboulian requires

* that the graphs have a sparse set of arcs such that the number of arcs per vertex is much
smaller than the total number of vertices;

* that the graphs be semidynamic, with the majority of edges remaining fixed through their
lifetime; and

* that the operations to be performed at each vertex be homogeneous.

It is evident that the neural networks considered in this report fulfill the latter two requirements.
The first requirement, however, is not satisfied by neural nets with high density of connections.

In regard to the SIMD architecture, Tomboulian specifies a very simple machine model.

* The processors execute a single instruction stream;

* processors have a small amount of local memory;

* processors cannot access global memory nor can they perform indirect addressing;

* a processor instruction consists of an op-code plus a local memory address;

* processors communicate only through physical links to a small subset of nearest neighbors;

* each processor has a unique identification number; and

* there exists a data channel to the front-end computer.

This machine model is definitely much simpler than the actual hardware and software provided
by the CM. In particular, the router provides the kind of global communications disallowed by
Tomboulian. On the other hand, grid addressing on the CM provides the kind of local communica-
tions to nearest neighbors that Tomboulian envisages. In grid addressing, the CM is configured as
an N-dimensional grid, where processors can read from or write to their nearest neighbors along
each dimension. This is the communications pattern referred to as the NEWS network. Currently,
under Release 4.3, the CM software supports only two-dimensional grids. Release 5 CM soft-
ware, however, will implement N-D NEWS, allowing experimentation with grid arrays of higher
dimensions.

To complete her model, Tomboulian makes several assumptions on the communications network
underlying the processors.

9

E. M. DEPRIT

* The neighbor connections are full duplex;

* the labeling scheme for neighbor links is unique and consistent across all processors;

* there exists a small number of neighbor links per processor;

* a path of neighbor links exists between any two processors; and

* the network diameter, that is, the maximum number of hops between processors, is not large.

The Tomboulian model machine lacks the global routing mechanism necessary for graph pro-
cessing; it must be implemented in software. To this effect, when embedding arbitrary directed
graphs on a SIMD machine, each vertex of the graph is assigned a processor. Then sending infor-
mation along an arc amounts to routing messages from neighbor to neighbor. Considering that a
message may require many hops to reach its destination, Tomboulian defines the parallel traversal
of all arcs to be an uninterruptible operation requiring T time steps; T is what she calls the time
quantum. An arc in the graph materializes as a sequence of contiguous links between processors,
beginning at a given step in the time quantum. In addition, Tomboulian forces paths to be invari-
ant in time and space, that is, once the sequence of links and the start time for a path are chosen,
they are never changed. No message buffering is allowed; once under way a message proceeds from
link to link without waiting at any processor. Finally, no message collisions are allowed; a processor
can receive only a single message at a given time step.

From these specifications, two rules for path construction follow. First, only one link can enter
and leave a processor at any given time step. Second, any path between processors representing an
arc must consist of links at contiguous time steps. Given these rules, the paths can be implemented
by a table of T routing slots, as described in Fig. 5. The 'startp' flag indicates the start of an
arc whereas the 'endp' flag signals the end of an arc. The 'arc-label' field contains information
attached to the start of each arc. The 'forward' and 'backward' slots form the heart of the routing
algorithm. Note that Tomboulian did not introduce a 'backward' slot since she was interested only
in forward routing. The 'backward' slot must be added to accommodate backward routing since
this feature is necessary in solving the back-propagation equations in a neural net.

struct Slot {
startp ; boolean for start of arc
forward ; forward read direction,
backward ; backward read direction,
endp ; boolean for end of arc,
arc-label ; information attached to arc.

}
Slots[T]

Fig. 5 - Routing table local to a processor in the net

At each time step, the processors examine the 'forward' or 'backward' slot to see over which
neighbor link they must read for forward or backward routing, respectively. Hence, traversing all

10

NRL REPORT 9167

arcs of the graph in parallel takes time T as the processors loop through their local routing tables.
Figure 6 presents an example of a small graph embedded in a grid of four processors. Figure 7
summarizes the basics of the forward routing algorithm; Fig. 8 contains the corresponding *Lisp
code.

Directed Graph Processor Network

2 35

startp
forward
backward
endp

abc d

1 1 1 1

SWN E

ES W N

101 1

a b c d

0 0 0
S - N
- S - N

O 0 1 0

a b c d

0 0
- W

00

E 0 1 0

0 1 0 0

Fig. 6 - The directed graph embedded in a grid of four processors

Examining the basics of routing in Tomboulian's scheme leads to a discussion of its use in solving
the feed-forward equations. Units propagate their activation levels by forward routing along the
connections of the net. On each outgoing connection, units send their activation level multiplied
by the weight stored in that connection's arc-label. Processors also accumulate the activation
messages received from incoming connections. Tomboulian's forward routing cycle replaces the
general send and scan operations used in the Nettalk implementation. Note that the performance
of the feed-foward equations depends critically on the time quantum T that governs the speed of
routing operations.

In the Tomboulian scheme, graphs are built serially, one arc at a time. The first step requires
building all possible trial paths from the source processor to the destination. The current *Lisp
implementation only propagates the shortest trial path forward when several paths meet. Next, if
the destination can be reached, pick the shortest trial path and trace it backward, updating the
slots array along the way (see Fig. 9).

This contrasts vividly with the Nettalk construction, which performs a parallel construction.

11

T
1

I

E. M. DEPRIT

Fig. 7 - Tomboulian's forward routing algorithm traverses all arcs of
the graph in time T.

Nevertheless, the Tomboulian scheme does have interesting implications for dynamic configuration
and fault tolerance. Graph edges may be deleted and added to an existing graph easily, opening
the possibility of dynamically reconfiguring a neural net. Next, this dynamic configuration offers
the possibility of fault tolerance. Upon discovering a faulty processor, all arcs going through
this processor could be recovered and reconstructed with another processor assigned to the unit.
In short, although much more expensive, the Tomboulian construction scheme exhibits greater
flexibility. Needless to say, dynamic reconfiguration of nets is especially important for hardware
implementations of neural nets. Indeed think of a general neural net chip that could be configured
for arbitrary net topologies and that could recover from component failures.

Experimenting with various SIMD architectures by simulator and on a CM, Tomboulian estab-
lished empirically that the time quantum T is approximately equal to the network diameter times
the average degree of each vertex. In the case of sparse graphs, the time quantum remains small,
parallel traversal of the arcs proceeds quickly, and the Tomboulian scheme proves quite effective.
Note that Tomboulian experimented exclusively with graphs of low connectivity such as n-ary trees
and random graphs with few arcs per vertex. Neural nets, however, exhibit high connectivity. This
report assesses the dire results that follow for the size of the time quantum. As the time quantum
grows, so does the time required for routing, causing unacceptably degraded performance in the
solution of the feed-forward and back-propagation equations.

12

Forward Routing

for all processors {

for time = 1 to T {

if slot.startp = t
then move msg to out-box

when slot.forward $ free {

move out-box from neighbor
in slot.forward to in-box

move in-box to out-box

}

if slot.endp = t
then move in.box to destination

NRL REPORT 9167

(defmacro route-forward (label-name

in-box!!

in-box-type

arc-start-function

arc-end-function)

(let ((slot (gensym))

(out-box!! (gensym)))

'(let (,label-name)

(*all

(*let (,in-box!!

,out-box!!)

(declare (type ,in-box-type

,in-box!! ,out-box!!))

(map nil

#'(lambda (,slot)

(setf ,label-name

(slot-arc-label!! slot))

(*if (slot-startp!! ,slot)

(*set ,out-box!!

,arc-start-f unction))

(*when (/=!! (slot-forward!! slot)

(neighbor-limit!!))
(pref-neighbor!! ,in-box!!

,out-box!!

(slot-forward!! slot))

(*set ,out-box!! ,in-box!!))

(*if (slot-endp!! slot)

,arc-end-function))
slots[]!!)

Fig. 8 - *Lisp code for forward routing

13

E. M. DEPRIT

Fig. 9 -Path construction for Tomboulian's graphs. The scheme at bottom
details the trial-path flooding algorithm.

14

Shortest Path Construction:

Flood all trial paths from source processor

If destination processor reached, then trace
shortest trial path backward & update slots

Shortest Trial Path Flooding:

for all processors {
reset trial-slots
set source processor active
for time = 1 to T {
when active and free to send {

for n = 1 to neighbor-limit {
if has neighbor n and shorter trial path to n
then update neighbor's trial-slot

}

}

if trial-slot.direction $ free
then mark as active
if destination processor active {

mark as inactive
if free to receive
then mark as reached
else clear trial-slot

}
set source processor active

}

NRL REPORT 9167

5. PERFORMANCE

Before discussing the RBP algorithm's performance on the CM, it may prove reassuring to
discuss how the *Lisp routines were verified, given the obvious difficulties of checking results in
massive networks. Both the Nettalk and Tomboulian implementations were exercised on several
small, well-studied problems with well-known behavior. Appendix A contains two such toy prob-
lems. In the first example, a continuous mapping net implemented with the Nettalk architecture
successfully learns the inclusive-or function, The second example shows an associative memory
net implemented with the Tomboulian scheme properly storing a target set corresponding to the
exclusive-or function.

To assess the performance of the RBP algorithm on the CM, consider the two network models
pictured in Fig. 10. The continuous mapping net consists of N output units, 2N hidden units, and
4N input units, with all layers fully connected to their superiors. Also, a bias node connects to all
the units in the hidden and output layers. For the feed-forward and back-propagation equations,
both the input and target vectors are taken to be unit vectors. The associative memory net model
consists of a hidden layer of N units and a visible layer of 8N units. The two layers are linked by
bundles of connections where each possible connection is made with a probability of 25%. For the
feed-forward and back-propagation equations, a unit vector serves as the target.

Continuous Mapping Net

-h ~N output units

I l T00%

|7 2N hidden u

1 00% 7

T = [1,l,...,1] 00%

bias unit

nits
100%

4N input units I= [1,,...,1]

Associative Memory Net

I N hidden units,

I isbleunts25%' T 25%

L ~~8N visible units T = [1 .1 ... 11

Fig. 10- Neural net models used in measuring the performance of the RBP
algorithm on the CM

The RBP timings were performed for varying network model sizes N, for both the Nettalk and
Tomboulian implementations. In the Nettalk implementation, the *Lisp routines were compiled
with both software and hardware floating-point. For each value of N, we measured the time to
construct the net and to solve both the feed-forward and back-propagation equations. Each such

15

100%

E. M. DEPRIT

timing specifies both the total execution time as measured on the front end and the actual execution
time on the CM.

Suffice to say, the timing experiments clearly demonstrate the superiority of the Nettalk ar-
chitecture over the Tomboulian scheme. The Nettalk implementation allowed the simulation of
much larger networks. These networks could be constructed much more quickly, and they were far
more efficient in solving the feed-forward and back-propagation equations. The Tomboulian im-
plementation permitted only the simulation of small nets, since the processor memory size sharply
limits the size of the routing tables. Indeed, for the continuous mapping net of size N equals 8,
the routing tables required exceed the capacity of local processor memory. Appendix B provides
the complete set of timing data collected.

Instead of reciting numbers, examining five charts extracted from the timing data provides
clearer insight into some characteristics of the CM and into the performance of the RBP algorithm.
The first three charts illustrate important lessons drawn from the Nettalk implementation of RBP.
The last two charts present some trends exhibited by the Tomboulian architecture.

The secret of success in the Nettalk implementation lies in its choice of connections as the basic
unit of representation. Figure 11 plots the numbers of units, connections, and processors allocated
for increasingly larger models of the associative memory net. As may be apparent, the number of
connections grows exponentially with the number of units in a neural network. The Nettalk scheme
tackles this difficulty head-on - the allocation curve for processor resources follows the growth in
connections, not in units.

5-

n 2- S ~~~~~~~~~ roessors
1 ff °~~~~~~~ Connections

. ., | W 1 |~1 Units

0
-j

0 20 40 60 80

Net size parameter N

Fig. 11- Allocation of processor resources for an associative memory net
under the Nettalk architecture

Figure 12 reveals some interesting implications of virtualization on the CM. The front-end time
and CM time required to construct the continuous mapping net mirror the staircase shape of the
\JP ratio. With each increase in the VP ratio, a physical processor must emulate larger numbers
of virtual processors. Note, however, that the construction time for larger mapping nets grows
less than linearly with the VP ratio, since sorting and communications operations become more
efficient for larger numbers of virtual processors. Using high VP ratios on the CM carries a smaller

16

NRL REPORT 9167

penalty than one might intuitively expect.

The next conclusion concerns the relative importance of communications versus computation
in the RBP algorithm. Figure 13 depicts the CM time for solution of the feed-forward equations
in the continuous mapping net using software and hardware floating-point. For software floating-
point, the CM processors perform all operations bit-serially. For hardware floating-point, the
feed-forward routines take advantage of the CM's WEITEK floating-point accelerator chips. As
readily observed, the floating-point hardware provides almost no increase in performance, providing
dramatic proof that the net spends most of its time in communications.

The RBP timings taken from the Tomboulian architecture provide interesting contrast to those
taken from the Nettalk scheme. Figure 14 shows the numbers of units and connections along with
the time quantum and percentage of routing slots used for the associative memory net. As the net
model size increases, the time quantum and slot use grow linearly with the number of units in the
net. These results agree perfectly with Tomboulian's empirical determination of T. As the number
of units increases, the average number of connections per unit multiplies, resulting in rapid growth
of the time quantum. Accordingly, processors representing units consume burgeoning amounts of
local memory space and processing time to perform Tomboulian's routing algorithm.

The growth in the time quantum holds dire consequences for network performance. Figure 15
shows that the front end and CM times for a feed-forward cycle in the associative memory net
increase linearly with the time quantum, resulting in rapid deterioration of RBP efficiency.

50I I I

40

v, 30

a)

20
I-

10

0
0 20 40 60 80

Net size parameter N

Fig. 12 - Effects of CM virtualization on net construction efficiency for a
continuous mapping net under the Nettalk architecture

17

VP= 1 2 4 8 1 6 *
S

0
El

Su *-*a ."

B E * Total timeI v * * L I CM time
.~ ~ ~ ---- *-----. . l

E. M. DEPRIT

0.8

a)
.E

1 4 8 12 16202428323640444852566064

Net size parameter N

Fig. 13- Communications versus computation in the Nettalk architecture. Feed-
forward cycle speed in a continuous mapping net is measured for both hardware
and software floating-point.

300

200

100

0
0 2 4 6 8

Net size parameter N

Fig. 14- Growth of the time quantum and slot usage with net size for an
associative memory net under the Tomboulian architecture

18

10

NRL REPORT 9167

10.

-*--- BP total time
0.8 - _0 Time Quantum

U BP CM time

2 0.6 -

0.4
_I-

0.2 .

0.0
0 2 4 6 8 10

Net size parameter N

Fig. 15 - Decreasing speed of back-propagation with growth of the time
quantum for an associative memory net under the Tomboulian architecture

6. CONCLUSIONS

As a design tool assisting in the hardware realization of neural nets, the CM proves eminently
suited for simulating candidate neural net algorithms and architectures. Because of its -flexibility,
the CM lends itself to exploring all kinds of network architectures and communications patterns.
The CM may be used as a universal parallel processor on which particular architectures may be
tested. In regard to neural networks, the CM plays the same role traditionally performed by serial
computers in the hardware design process.

The CAI simulation clearly establishes that networks spend most of their activity in communi-
cating rather than in calculating. In a serial implementation, communication is simulated in the
form of matrix operations. In the CM, on the other hand, the communications are actual, not
simulated: units send their activation levels to connected units and, in turn, receive correction
signals from them. In either case, these operations are time consuming. Therefore, most of the
resources of the parallel machine should be spent on representing connections rather than units.
This preponderance of communication over computation is especially true for the RPB scheme
since it iterates over the net. In regard to hardware implementation, much attention has been paid
to the problem of realizing arithmetic operations in analog circuitry. In other words, researchers
have spent most of their time implementing the units of the net. Insofar as it reflects reality, the
RBP simulation indicates that a far bigger problem lies in creating the means for efficient hardware
comnmunications -representing the connections of the net.

Nettalk works well for highly connected nets; Tomboulian's scheme fails for dense graphs. The
Nettalk implementation, however, makes full use of the communications power of the CM. Such
sophisticated routing capability seems impossible to realize on a single chip in present technology.
A neural net chip must be based on simpler routing constructs. For sparse nets with small time
quanta, the Tomboulian architecture offers an alternative, more so because it presents interesting
implications for dynamic reconfiguration. Nevertheless, a neural net chip still cannot be based on

19

E. M. DEPRIT

Tomboulian's routing scheme.

Ideally, one might conceive of combining the two paradigms to create a neural net chip set.
On the one hand, there would be an analog chip containing collections of computing units laid on
top of a reconfigurable network of wires. The feed-forward and back-propagation equations would
be solved by analog computations according to Pineda's RBP algorithm. This chip resembles
the Nettalk architecture in that most of the hardware resources would be devoted to a flexible
network of connections among the units, On the other hand, there would a digital controller chip
to configure the communications network on the analog chip by running a path-finding algorithm,
such as Tomboulian's. Such a pairing would allow the general analog chip to actuate arbitrary
neural net topologies, and provide a measure of fault tolerance by dynamic reconfiguration.

7. ACKNOWLEDGMENTS

Dr. Fernando Pineda of the Applied Physics Laboratory (Johns Hopkins University) suggested
the topic of this work and reviewed the results. Without the support of Dr. Shannon Coffey at the
Navy Center for Space Technology (Naval Research Laboratory), this research would not have been
possible. Robert Whaley of Thinking Machines Corporation has been of considerable assistance in
the coding and the use of the Connection Machine. Comments by Dr. Liam Healy, NRC Research
Associate at the Naval Research Laboratory, and by Dr. Andre Deprit of the Center for Applied
Mathematics (National Bureau of Standards) have been very helpful.

8. REFERENCES

1. W. D. Ilillis, The Connection Machine (The MIT Press, Cambridge, MA, 1985).

2. W. D. Hillis and G. L. Steele, Jr., "Data Parallel Algorithms," Commun. ACM 29, 1170-1183
(1986).

3. F. J. Pineda, "Generalization of Back-Propagation to Recurrent Neural Networks," Phys. Rev.
Lett. 59, 2229-2232 (1987).

4. F. J. Pineda. "Generalization of Back-Propagation to Recurrent and Higher Order Neural-
Networks," to appear in the Proceedings of IEEE Conference on Neural Information Processing
Systems, Denver, CO (1987).

5. C. R. Rosenberg and G. E. Blelloch, "An Implementation of Network Learning on the Con-
nection Machine," Technical report, Thinking Machines Corporation, Cambridge, MA, 1986.

6. Connection Machine Parallel Instruction Set (Thinking Machines Corporation, Cambridge,
MA, 1986).

7. Introduction to Data Level Parallelism (Thinking Machines Corporation, Cambridge, MA,
1986).

8. S. J. Tomboulian, A System for Routing Arbitrary Communication Graphs on SIMD Archi-
tectures, Ph. D. Dissertation, Duke University, 1986.

20

NRL REPORT 9167

9. S. J. Tomboulian. "A Brief Overview of a System for Routing Directed Graphs on SIMD
Architectures," to appear in the Proceedings of 2nd Symposium on the Frontiers of Massively
Parallel Computation, Fairfax, VA (1988).

10. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, in Parallel Distributed Process-

ing, D. E. Rumelhart and J.L. McClelland, eds. (The MIT Press, Cambridge, MA, 1986).

11. *Lisp Reference Manual (Thinking Machines Corporation, Cambridge, MA, 1987).

21

Appendix A
SAMPLE NETS

As explained in Section 5, several elementary problems serve to verify the implementation of
RBP on the CM. These sample runs also prove useful in demonstrating how to use the *Lisp
routines.

Al Nettalk Architecture

The first sample run teaches the net depicted in Fig. Al the inclusive-or function.

Output
Slab 2

Bias Node

Slab 1 Slab 3

Slab 0 /Input

Fig. Al -Inclusive-or continuous mapping net constructed by the
DEF-MAPPING-NET macro

The following forms typed to the Lisp listener construct the IOR net, define and load the in-
put/target pairs, and start the training.

(def-mapping-net or-mapping-net
:slabs '(2 1 1 1)
:input-slab-no 0
:output-slab-no 2
:bundles '((1 0 100)

(2 0 100)
(2 1 100)
(1 3 100)
(2 3 100)
(3 3 100)

23

E. M. DEPRIT

(defvar *ior-mapping-pairs*)

(setf *ior-mapping-pairs*

(list-to-array-pairs '(((0.0 0.0) (0.0))

((0.0 1.0) (1.0))
((1.0 0.0) (1.0))
((1.0 1.0) (1.0)))))

(defvar *ior-mapping-set*)

(setf *ior-mapping-set*

(cm-load-mapping-set 'ior-mapping-set *ior-mapping-pairs*))

(train-net or-mapping-net

ior-mapping-set

:print-training-set #'print-training-set

:print-interval 20

:print-net-io #'print-io-vecs)

The report produced by the TRAIN-NET function is excerpted below and summarized in Table
Al.

Net Training

CONTINUOUS-MAPPING net: OR-MAPPING-NET

4 slabs, 6 bundles

5 units, 8 connections ->21 processors

a = 1.0, b = 1.0

Feed-forward convergence = 0.001, min 4 iterations
Back-propagate convergence = 0.001, min 4 iterations

eta = 0.25, alpha = 0.9
Weight update convergence = 0.1, max 10000 iterations

MAPPING-SET: IOR-MAPPING-SET

i: 0.0 0.0 t: 0.0

i: 0.0 1.0 t: 1.0

i: 1.0 0.0 t: 1.0

i: 1.0 1.0 t: 1.0

Iteration 0

i: 0.0 0.0 o: 0.47596744

i: 0.0 1.0 o: 0.49091664

i: 1.0 0.0 o: 0.4085974

i: 1.0 1.0 o: 0.42314819

Error = 2.1533053

Iteration 20
i: 0.0 0.0 o: 0.60783666
i: 0.0 1.0 o: 0.7946026
i: 1.0 0.0 o: 0.77972716
i: 1.0 1.0 o: 0.89824456

Error = 1.1352623

24

NRL REPORT 9167

Iteration 300
i: 0.0 0.0 o: 0.0999451
i: 0.0 1.0 o: 0.9384478
i: 1.0 0.0 o: 0.93790066
i: 1.0 1.0 o: 0.9991285
Error = 0.22446814

Training set learned after 301 iterations.

i: 0.0 0.0 o: 0.09965193
i: 0.0 1.0 o: 0.9386314
i: 1.0 0.0 o: 0.93808526
i: 1.0 1.0 o: 0.99913496
Error = 0.22446814

Table Al - Sample Run for the Nettalk Implementation of an IOR Mapping Net

25

Iteration L Input -F Output _ Error
[0,01 - [0] I [(,I] - [1] [[1,0] - [1] [[1,1] - [1] 1 l

0 0.475967440 0.49091664 0.40859740 0.42314819 2.15330530

20 0.607836660 0.79460260 0.77972716 0.89824456 1.13526230

40 0.523044400 0.78751314 0.78820790 0.92609406 1.02122930

60 0.445310150 0.79706100 0.80016330 0.95087760 0.89720820

80 0.374926000 0.81468093 0.81675434 0.96944827 0.77404240

100 0.312892900 0.83520794 0.83605444 0.98171127 0.65991926

120 0.261516780 0.85550890 0.85557880 0.98894240 0.56148670

140 0.221299750 0.87344560 0.87311420 0.99305516 0.48168480

160 0.190724300 0.88835150 0.88783570 0.99538165 0.41915548

180 0.167220180 0.90026370 0.89967410 0.99674326 0.37053907

200 0.149121730 0.91006210 0.90944266 0.99759334 0.33202365

220 0.134924490 0.91799843 0.91737980 0.99814450 0.30140173

240 0.123531714 0.92450523 0.92390060 0.99851924 0.27660662

260 0.114199980 0.92991730 0.92933120 0.99878496 0.25616658

280 0.106417686 0.93448216 0.93391600 0.99898010 0.23903945

300 0.099945100 0.93844780 0.93790066 0.99912850 0.22446814

301 0.099651930 0.93863140 0.93808526 0.99913496 0.22446814

E. M. DEPRIT

A2 Tomboulian Architecture

This section parallels the results of the previous one for an exclusive-or associative memory net
underlied by the Tomboulian architecture. The Lisp forms below construct and train the exclusive-
or net specified in Fig. A2. Table A2 summarizes the sample run presented.

Slab 0

Fig. A2 - Exclusive-or associative memory net constructed by the
DEF-MEMORY-NET macro

The following forms typed to the Lisp listener construct the XOR net, define and load the target
vectors, and start the training.

(def -memory-net or-memory-net
:slabs '(3 1)
:input-slab-no 0
:bundles '((0 0 100)

(O 1 100)
(1 1 100)

)
: epsilon-w 0.05

(defvar *xor-memory-list*)
(setf *xor-memory-list*

(list-to-array '((0.0
(0.0
(1.0
(1.0

0.0 0.0)
1.0 1.0)
0.0 1.0)
1.0 0.0))))

(defvar *xor-memory-set*)
(setf *xor-memory-set*

(cm-load-memory-set 'xor-memory-set *xor-memory-list*))

(train-net or-memory-net
xor-memory-set
:print-training-set #'print-training-set

26

NRL REPORT 9167

:print-interval 20
:print-net-io #'print-io-vecs)

The TRAIN-NET function produces the reported excerpted below; Table A2 documents the com-
plete training results.

Net Training

ASSOCIATIVE-MEMORY net: OR-MEMORY-NET

2 slabs, 3 bundles
4 units, 13 connections ->4 processors

a = 1.0, b = 1.0

Feed-forward convergence = 0.001, min 4 iterations

Back-propagate convergence = 0.001, min 4 iterations

eta = 0.25, alpha = 0.9
Weight update convergence = 0.05, max 10000 iterations

MEMORY-SET: XOR-MEMORY-SET

i: 0.0 0.0 0.0
i: 0.0 1.0 1.0
i: 1.0 0.0 1.0
i: 1.0 1.0 0.0

Iteration 0
i: 0.0 0.0 0.0 0:
i: 0.0 1.0 1.0 o:
i: 1.0 0.0 1.0 o:
i: 1.0 1.0 0.0 o:
Error = 3.3785267

Iteration 20
i: 0.0 0.0 0.0 o:
i: 0.0 1.0 1.0 o:
i: 1.0 0.0 1.0 o:
i: 1.0 1.0 0.0 o:
Error = 1.6629202

Iteration 420
i: 0.0 0.0 0.0 o:
i: 0.0 1.0 1.0 0:
i: 1.0 0.0 1.0 o:
i: 1.0 1.0 0.0 o:
Error = 0.2669139

0.53553134 0.55844945 0.5587541
0.66410667 0.5466608 0.5988787
0.66019136 0.57686245 0.5815371
0.6112226 0.58896685 0.47078228

0.39624417
0.20121947
0.82579315
0.81852823

0.42216888 0.42507586
0.82004374 0.83080995
0.19658758 0.82820785
0.8260062 0.18509121

0.050692994 0.051062807 0.05110865

0.03370365 0.9651646 0.96524113
0.96526337 0.03356958 0.9652226
0.9652148 0.9652037 0.03343686

Training set learned after 438 iterations.

i: 0.0 0.0 0.0
i: 0.0 1.0 1.0

0: 0.07672652 0.07758254 0.07768838
o: 0.044398107 0.95486647 0.9549862

27

E. M. DEPRIT

i: 1.0 0.0 1.0 o: 0.95502245 0.04418476 0.9549585
i: 1.0 1.0 0.0 o: 0.95495033 0.95493317 0.043976907
Error = 0.2611845

Table A2- Sample Run for the Tomboulian Implementation of an XOR Memory Net

Iteration [Fixed Points I Error
I [0,0,0] I [0,1,1] I [1,0,1] I [1,1,0] I

0

20

40

80

120

160

200

240

280

320

360

400

438

0.535531340
0.558449450
0.558754100

0.396244170
0.422168880
0.425075860

0.275940400
0.292070450
0.293652100

0.149614990
0.155146170
0.155658470

0.110390110
0.113153750
0.113438090

0.090866710
0.092580350
0.092768740

0.078779950
0.079972155
0.080108650

0.070399430
0.071289600
0.071394210

0.064166170
0.064863300
0.064946750

0.059303710
0.059868710
0.059937287

0.055377590
0.055847496
0.055905145

0.052123690
0.052522577
0.052571874

0.076726520
0.077582540
0.077688380

0.664106670
0.546660800
0.598878700

0.201219470
0.820043740
0.830809950

0.120262250
0.865704660
0.869275100

0.077436500
0.906636600
0.907629300

0.063607864
0.928096300
0.928614100

0.055146575
0.939691840
0.940025030

0.049278720
0.947130500
0.947367670

0.044914193
0.952403200
0.952582900

0.041510116
0.956385100
0.956527200

0.038762380
0.959526800
0.959642600

0.036485903
0.962085840
0.962182500

0.034560820
0.964221400
0.964303900

0.044398107
0.954866470
0.954986200

0.660191360
0.576862450
0.598878700

0.825793150
0.196587580
0.828207850

0.868772030
0.118025504
0.868246800

0.908097900
0.076124990
0.907315900

0.928866000
0.062789350
0.928464100

0.940168600
0.054593630
0.939934250

0.947459400
0.048876950
0.947305300

0.952646800
0.044606360
0.952536940

0.956574500
0.041264930
0.956491530

0.959679250
0.038561273
0.959613860

0.962211900
0.036317125
0.962158800

0.964328050
0.034416642
0.964283900

0.955022450
0.044184760
0.954958500

0.611222600
0.588966850
0.470782280

0.818528230
0.826006200
0.185091210

0.866055200
0.867952100
0.1 13853940

0.907281640
0.907307000
0.074514830

0.928474600
0.928415240
0.061894290

0.939931000
0.939884660
0.054013073

0.947296400
0.947262400
0.048463512

0.952526300
0.952500460
0.044293456

0.956481100
0.956460540
0.041017827

0.959604000
0.959587300
0.038359870

0.962149700
0.962135800
0.036149006

0.964275540
0.964263600
0.034273600

0.954950330
0.954933170
0.043976907

3.378526700

1.662920200

1.160470500

0.720232400

0.551653400

0.462379520

0.405272000

0.364817650

0.334269300

0.310167850

0.290535570

0.274150460

0.261184500

28

Appendix B
TIMINGS

To evaluate the performance of the RBP algorithm on the CM, the following tables present the
timing data collected for the neural net models of Fig. 10.

Tables Bi to B4 present statistics for the continuous mapping and associative memory net
models under the Nettalk architecture. The following data are given for each value of the net size
parameter N:

the number of units in the timing net,
the number of connections,
the number of virtual processors used,
the ratio of virtual to physical processors.

The next columns give the time taken to perform the three basic operations:

making the net,
feed-forward cycle,
back-propagation cycle.

Each timing is given both as the total elapsed time on the front end and on the CM.

Table B2 provides the same timings as Table B1. In contrast to Table Bi, however, the timings
in Table B2 were collected by using software rather than hardware floating-point in an attempt to
assess the dominance of communication over computation in the nets.

The same relationship exists between Tables B3 and B4 for an associative memory net in the
Nettalk implementation. Tables B3 and B4 provide timing data for associative memory nets rather
than continuous mapping nets in order to verify the modifications required to the RBP algorithm
and assess its performance on lower density nets.

Tables B5 and B6 give timing data for continuous mapping and associative memory nets by
using the Tomboulian architecture. Two columns have been added: one for the time quantum and
one for the slot use in the routing tables. The results in these tables provide a vivid contrast to
those in Tables BD to B4, thereby revealing the superiority of the Nettalk scheme.

29

E. M. DEPRIT

Table BI -Timings for the Nettalk Implementation of a Continuous Mapping Net
Compiled with Hardware Floating Point

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

1

1

1

1

1

2

4

4

4

8

8

8

8

16

16

16

16

N Units Connections Processors VP Make (s) FF (s) BP (s)

Ratio CM CM CM
Total Total Total

0.083
0.190

0.078
0.160

0.069
0.150

0.076
0.160

0.078
0.160

0.092
0.160

0.146
0.200

0.155
0.210

0.165
0.220

0.281
3.300

0.295
4.300

0.293
4.300

0.292
4.300

0.583
8.400

0.601
8.430

0.618
8.390

0.609
8.410

30

29

57

85

113

141

169

197

225

253

281

309

337

365

393

421

449

237

921

2053

3633

5661

8137

11061

14433

18253

22521

27237

32401

38013

44073

50581

57537

44

503

1899

4191

7379

11463

16443

22319

29091

36759

45323

54783

65139

76391

88539

101583

115523

0.116
0.220

0.210
0.320

0.468
0.580

0.892
1.010

1.467
1.580

2.304
3.390

3.585
9.600

4.642
7.680

5.879
10.900

8.663
21.410

10.469
23.170

12.076
23.770

13.796
24.610

21.192
36.930

23.726
38.990

26.319
41.510

29.587
45.210

0.017
0.020

0.027
0.030

0.027
0.030

0.027
0.030

0.028
0.030

0.038
0.040

0.078
0.080

0.078
0.080

0.154
0.160

0.163
4.090

0.176
4.090

0.173
4.100

0.183
4.090

0.359
4.090

0.377
4.090

0.378
4.090

0.403
4.090

1 8 18

NRL REPORT 9167

Table B2- Timings for the Nettalk Implementation of a Continuous Mapping Net
Compiled with Software Floating Point

237

921

2053

3633

5661

8137

11061

14433

18253

22521

27237

32401

38013

44073

50581

57537

1

N Units Connections Processors VP Make (s) FF (s) BP (s)

T Total Total Total

0.017
0.020

0.027
0.030

0.027
0.030

0.027

0.030

0.028
0.030

0.038
0.040

0.079
0.080

0.075
0.080

0.075
0.080

0.161
4.090

0.180
4.090

0.178
4.090

0.182
4.090

0.369
4.090

0.389
4.100

0.389
4.090

0.409
4.090

1

1

1

1

2

4

4

4

8

8

8

8

16

16

16

16

44

503

1899

4191

7379

11463

16443

22319

29091

36759

45323

54783

65139

76391

88539

101583

115523

0.117
0.220

0.218
0.320

0.478
8.630

0.885
0.990

1.454
1.560

2.334
3.430

3.591
10.600

4.684
7.740

5.910
10.950

8.694
21.600

10.282
23.010

11.998
23.710

13.933
23.860

21.165
36.950

23.880
39.200

26.345
41.510

29.512
45.100

0.065
0.150

0.077
0.160

0.078
0.160

0.075
0.170

0.077
0.160

0.101
0.170

0.151
0.210

0.157
0.210

0.167
0.220

0.288
3.310

0.297
4.310

0.297
4.300

0.300
4.300

0.593
8.400

0.600
8.390

0.621
8.390

0.616
8.420

31

1 8

29

57

85

113

141

169

197

225

253

281

4

8

12

16

20

24

28

32

36

40

44 1 309

48 1 337

52 1 365

56 1 393

60 l 421

64 l 449

18

E. M. DEPRIT

Table B3- Timings for the Nettalk Implementation of an Associative Memory Net
Compiled with Hardware Floating Point

36

72

108

144

180

216

252

288

324

360

396

432

468

504

540

576

1

N Units T Connections Processors VP Make (s) FF (s) BP (s)

Ratio CM -CM | CM

Total 90Total Total

0.008
0.010

0.018
0.020

0.018
0.020

0.018
0.020

0.018
0.020

0.017
0.020

0.017
0.020

0.018
0.020

0.028
0.030

0.028
0.030

0.028
0.030

0.028
0.030

0.059
0.060

0.059
0.060

0.059
0.060

0.058
0.060

0.122
0.870 1 4.090

1

1

1

1

1

1

1

2

2

2

2

4

4

4

4

8

4

68

264

527

1033

1564

2265

3152

3988

5071

6413

7821

8241

10733

12607

14300

16475

17

172

600

1162

2210

3308

4746

6556

8264

10466

13186

16038

16914

21934

25718

29140

33526

0.075
0.120

0.110
0.150

0.179
0.220

0.280
0.320

0.468
0.510

0.659
0.700

0.917
0.960

1.235
1.280

1.627
2.640

2.012
3.030

2.547
3.570

3.005
4.020

3.457
10.370

4.317
7.250

5.030
6.950

5.629
6.550

7.223
21.480

32

0.063
0.140

0.131
0.310

0.135
0.300

0.137
0.300

0.126
0.290

0.136
0.300

0.136
0.300

0.128
0.290

0.185
0.320

0.173
0.310

0.175
0.310

0.267
0.470

0.431
0.590

0.415
0.570

0.424
0.580

0.430
0.590

0.752

1

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

9

NRL REPORT 9167

Table B4 - Timings for the Nettalk Implementation of an Associative Memory Net
Compiled with Software Floating Point

N Units Connections Processors VP Make (s) FF (s) BP (s)

Ratio CM CM CM
Total Total Total

1

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

9

36

72

108

144

180

216

252

288

324

360

396

432

468

504

540

576

4

64

258

638

1041

1544

2294

3070

4076

5165

6369

7637

8228

10811

12592

14342

16362

17

164

588

1384

2226

3268

4804

6392

8440

10654

13098

15670

16888

22090

25688

29224

33300

1

1

1

1

1

1

1

1

2

2

2

2

4

4

4

4

8

0.084
0.130

0.113
0.160

0.189
0.230

0.319
0.360

0.479
0.520

0.668
0.710

0.940
0.990

1.205
1.250

1.668
2.690

2.059
3.080

2.507
3.530

2.943
3.960

3.454
8.380

4.354
6.290

5.126
6.060

5.689
7.610

7.276
21.490

0.077
0.160

0.078
0.160

0.147
0.310

0.103
0.300

0.136
0.300

0.146
0.320

0.138
0.300

0.145
0.310

0.195
0.330

0.194
0.330

0.284
0.490

0.290
0.490

0.434
0.590

0.437
0.600

0.442
0.600

0.436
0.600

0.779
0.900

-0.005
0.030

0.027
0.030

0.027
0.030

0.027
0.030

0.027
0.030

0.027
0.030

0.027
0.030

0.027
0.030

0.038
0.040

0.038
0.040

0.038
0.040

0.038
0.040

0.069
0.070

0.059
0.060

0.068
0.070

0.069
0.070

0.131
4.090

33

E. M. DEPRIT

Table B5 - Timings for the Tomboulian Implementation of a Continuous Mapping Net
Compiled with Hardware Floating Point

34

N Units Connec- VP TQ Slot Use Make(s) F F (s) BP (s)

Processors tions Ratio (%) CM CM CM
Total Total Total

1 8 18 1 9 0.076 0.685 0.098 0.049

2.060 0.200 0.070

2 15 63 1 21 0.169 3.853 0.150 0.113
12.080 0.300 0.160

3 22 136 1 33 0.273 12.673 0.432 0.173
38.800 0.740 0.250

4 29 237 1 45 0.426 29.023 0.269 0.232
94.400 0.440 0.330

5 36 366 1 64 0.507 63.336 0.722 0.329

195.100 1.160 0.460

6 43 523 1 82 0.606 112.862 0.906 0.416
348.150 1.400 0.580

7 50 708 1 109 0.694 192.492 1.159 0.556
594.000 1.770 0.780

8 57 921 1 *** * *** *** ***
** *** ***

NRL REPORT 9167

Table B6 -Timings for the Tomboulian Implementation of an Associative Memory Net
Compiled with Hardware Floating Point

35

N Units Connec- VP TQ Slot Use Make (s) FF (s) BP (s)

Processors tions Ratio (%) CM CM CM
Total Total Total

1 9 1 4 0.034 0.153 0.028 0.018
0.752 0.063 0.039

2 18 15 1 12 0.065 0.444 0.121 0.050
3.061 0.249 0.112

3 27 39 1 16 0.160 1.378 0.158 0.072
8.564 0.363 0.151

4 36 60 1 19 0.206 2.264 0.167 0.077
13.821 0.379 0.169

5 45 102 1 26 0.371 5.205 0.221 0.105
32.456 0.526 0.265

6 54 150 1 33 0.496 9.033 0.285 0.146
52.893 0.626 0.290

7 63 193 1 43 0.458 14.250 0.355 0.357
83.755 0.768 0.762

8 72 257 1 49 0.655 22.298 0.421 0.390
126.665 0.946 0.868

Appendix C
*LISP CODE FOR NETTALK IMPLEMENTATION

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -*-

(in-package '*lisp)

;;; Etienne Deprit
;;; Naval Research Lab, Code 8242

;;; Nettalk Implementation

;;; Pvar Types

MAX-INT-PVAR
CUBE-ADDRESS-PVAR
SLAB-NO-PVAR
UNIT-NO-PVAR
BUNDLE-NO-PVAR
CONNECTION-NO-PVAR

unsigned byte
unsigned byte
unsigned byte
unsigned byte
unsigned byte
unsigned byte

[O , 2-16-1]
[O , *log-number-of-processors-limit*J
[O , 2^16-1]
[O , 2-16-1]
[O , 2T16-1J
[O , 2-32-1]

; Pvar type field sizes

(defvar
(defvar
(defvar
(defvar
(defvar

cm-mar-int)
slab-no-size)
unit-no-size)
bundle-no-size)
connection-no-size)

Set field sizes in compiler's environment

(eval-when (compile load eval)
(setf *cm-max-int* (expt 2 16))

(setf *slab-no-size* 16)
(setf *unit-no-size* 16)
(setf *bundle-no-size* 16)
(setf *connection-no-size* 32)
)

Define pvar types

(deftype max-int-pvar () '(pvar (unsigned-byte
*.(1+ (ceiling (log *cm-max-int* 2))))))

(deftype cube-address-pvar C) '(pvar (unsigned-byte
log-number-of-processors-limit)))

(deftype slab-no-pvar () '(pvar (unsigned-byte #.*slab-no-size*)))

(deftype unit-no-pvar 0) '(pvar (unsigned-byte #.*unit-no-size*)))

(deftype bundle-no-pvar 0) '(pvar (unsigned-byte #.*bundle-no-size*)))

37

E. M. DEPRIT

(deftype connection-no-pvar 0 '(pvar (unsigned-byte 3.*connection-no-size*)))

When using simulator, add new pvar type symbols

#+:*lisp-simnlator
(progn

(pushnew 'max-int-pvar **lisp-exported-type-symbols*)
(pushnew 'cube-address-pvar **lisp-exported-type-symbols*)
(pushnew 'slab-no-pvar **lisp-exported-type-symbols*)
(pushnew 'unit-no-pvar **lisp-exported-type-symbcls*)
(pushnew 'bundle-no-pvar **lisp-exported-type-symbols*)
(pushnew 'connection-no-pvar **lisp-exported-type-symbols*)

;;; EOF

#+: ccl

(format t "-%\"Pvar Types\" loaded")

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -*-

(in-package '*lisp)

;;;Etienne Deprit
;;; Naval Research Lab, Code 8242

;;;Nettalk Implementation

;;; Utilities

COUNT-CSS returns the number of processors in the currently selected set.

(defun count-css 0
(*sum (H!)))

MAX-INT!! returns a field pvar containing *CM-MAX-INT*.

(defmacro max-int! 0
'(the max-int-pvar (! *cm-max-int*)))

RANDOM-FLOAT!! returns a random float pvar evenly distributed in the interval
[mean-interval , mean+interval] in each processor.

#-:*lisp-simulator
(*proclaim '(ftype (function (t) (pvar single-float)) random-float!!))

(*defun random-float!! (mean!! interval!!)
(declare (type float-pvar mean!! interval!!))
(+!! mean!!

(*!! interval!!
(if!! (=!! (random!! (!! 2)) (!! 1))

(!! 1.0)

(!! -1.0))

(/!! (random!! (max-int!!))
(max-int!!0))))

FORMAT-PVARS pretty prints the given list of PVARS. Additional keyword arguments
will be passed in to PRETTY-PRINT-PVAR.

38

NRL REPORT 9167

(defmacro format-pvars (pvars trest keys tkey tallow-other-keys)
'(progn

,O(mapcan *'(lambda (pvar)
'((format t "%-a" (pvar-name ,pvar)) (ppp ,pvar ,Qkeys)))

pvars)))

MULTIPLE-VALUE-SETF sets the locations referenced by ACCESSOR-FORMS
to the multiple values returned by VALUES-FORM.

(defmacro multiple-value-setf (accesor-forms values-form)
(let ((values-list (gensym))

(i -1))
'(let ((,values-list (multiple-value-list ,values-form)))

(setf ,Q(mapcan #'(lambda (accessor-form)
'(,accessor-form (nth ,(incf i) ,values-list)))

accesor-forms)))))

PRINT-VEC prints the array VEC on STREAM with the given ELEMENTS-PER-LINE.
Each element is printed using ELEMENT-FORMAT, and each line of output is
preceeded by NEW-LINE-FORMAT.

(defun print-vec (vec &optional (stream t)
tkey elements-per-line (element-format "s ") (new-line-format "%"))

(dotimes (i (length vec))
(if (and elements-per-line

(zerop (mod i elements-per-line)))
(format stream "-O?" new-line-format))

(format stream "-?" element-format (aref vec i)))
(values))

PRINT-IO-VECS prints the INPUT and OUTPUT vectors.

(defun print-io-vecs (input output)
(format t -%i: ") (print-vec input)
(format t " o: ") (print-vec output))

LIST-TO-ARRAY-PAIRS coerces the list of LIST-PAIRS into a list of array pairs.

(defun list-to-array-pairs (list-pairs)
(let (input target)

(map 'list
*'(lambda (pair)

(setf input (first pair)
target (second pair))

(list
(make-array (length input) :initial-contents input)
(make-array (length target) :initial-contents target)))

list-pairs)))

LIST-TO-ARRAY coerces the list of lists into a list of arrays.

(defun list-to-array (list)
(map 'list

#'(lambda (sub-list)
(make-array (length sub-list) :initial-contents sub-list))

list))

EOF

#+:ccl
(format t "%\"Utilities\" loaded")

39

E. M. DEPRIT

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -*-

(in-package '*lisp)

Etienne Deprit
;;; Naval Research Lab, Code 8242

;;;Nettalk Implementation

Processor Allocation

CM Dimensions

CM-DIMENSIONS is a list of CM configurations. Each configuration is a list
of the total number of processors and the corresponding CM dimensions.

(defvar *cm-dimensions*
(mapcar *'(lambda (dims)

(list (reduce *'* dims) dims))
#+:*lisp-hardware ; 8K machine
'((64 128) ; VP ratio

128 128)
128 256)
256 256)
256 512)
512 512)
512 1024)

(1024 1024))
*+:*lisp-simulator
'((4 4)

(6 4)
(6 6)
(8 6)
(8 8))

= 1
= 2
= 4

= 8
= 16
= 32
= 64
= 128

CM-BEST-FIT-DIMS returns the minimum CM dimensions necessary
to satisfy the request for NO-PROCESSORS.

(defun cm-best-fit-dims (no-processors)
(second (assoc no-processors

cm-dimensions
:test *'<)))

Processor Allocator - allocate contiguous blocks of free processors, no deallocation

NEXT-FREE-PROCESSOR contains the cube address of the next free processor.

(defvar *next-free-processor* 0)

RESET-PALLOC reset the processor allocator.

(defun reset-palloc (
(setf *next-free-processor* 0)
t)

N-PROC-LEFT-P returns T if there are N free processors available or
signals an error if there are too few free processors left.

40

NRL REPORT 9167

(defun n-proc-left-p (n)
(or (<= (+ *next-free-processor* n) *number-of-processors-limit*)

(error "PALLOC can't allocate -a processor-:*-[s-;-:;s-]" n)))

PALLOC allocates the next N free processors.

(defun palloc (n)
(when (n-proc-left-p n)

(progi
next-free-processor
(incf *next-free-processor* n))))

PALLOC-1 allocates a single free processor.

(defmacro palloc-1 0
'(palloc 1))

FOR-PROCESSOR-BLOCK executes BODY with the currently selected set composed
of the block of SIZE processors beginning at START-ADDR.

(defmacro for-processor-block ((start-addr size) tbody body)
'(*when (<=!! (the cube-address-pvar (!! ,start-addr))

(self-address!!)
(the cube-address-pvar (! (1- (+ ,start-addr ,size)))))

,Qbody))

WITH-N-PROC-ALLOCATED allocates a block of N processors, sets ADDR
to the starting address of the block and executes BODY with the
currently selected set composed of the newly allocated processors.

(defmacro with-n-proc-allocated ((n addr)
tbody body)

C(let ((,addr (palloc ,n)))
(for-processor-block (,addr ,n)
,Qbody)))

In Allegro CL, set FRED indentation for macros

#+:ccl
(progn

(pushnew '(with-n-proc-allocated . 1)
ccl::*fred-special-indent-alist*
:test *'equal)

(pushnew '(for-processor-block . 1)
ccl::*fred-special-indent-alist*
:test t'equal))

Reset Processor Allocator after *COLD-BOOT.

#+:*lisp-hardware
(add-initialization "Reset Palloc"

'(reset-palloc)
'*after-*cold-boot-initializations*)

#+:*lisp-simulator
(add-initialization :name-of-form "Reset Palloc"

:form '(reset-palloc)
:variable '*after-*cold-boot-initializations*)

EOF

#+:ccl
(format t "-.\"Processor Allocation\" loaded")

41

E. M. DEPRIT

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -*-

(in-package '*lisp)

;;; Etienne Deprit
;;; Naval Research Lab, Code 8242

Nettalk Implementation

Neural Net Front-End Structures

SLAB set of units
BUNDLE set of connections between 2 slabs with density 0-100%
NET sets of slabs and bundles,

with input t output slab (possibly the same)
represents CONTINUOUS-MAPPING or ASSOCIATIVE-MEMORY net

Slab of units

(defstruct (net-slab
*+:symbolics
(:named)
(:conc-name slab-)
(:constructor fe-make-slab-internal)
(:print-function print-slab)
)

no ; slab id
inputp ; input slab?
outputp ; output slab?
size ; no of units
)

PRINT-SLAB prints SLAB on STREAM.

(defun print-slab (slab stream toptional depth)
(declare (ignore depth))
(format stream "#<Slab -a, -a unit-:*C[s-;-:;sI- :[-; Ii : U; 01 >"

(slab-no slab) (slab-size slab)
(slab-inputp slab) (slab-outputp slab)))

SLAB-NO!! returns a slab-no-pvar pvar containing the SLAB id in each

(defmacro slab-no!! (slab)
'(the slab-no-pvar (!! (slab-no ,slab))))

SLAB-INPUTP!! returns a boolean pvar containing T if SLAB is the inpi

(defmacro slab-inputp!! (slab)
'(the boolean-pvar (!! (slab-inputp ,slab))))

SLAB-OUTPUT!! returns a boolean pvar containing T if SLAB is the out)

(defmacro slab-outputp!! (slab)
'(the boolean-pvar (!! (slab-outputp ,slab))))

; Bundle of connections

(defstruct (net-bundle
X+:symbolics
(:named)

42

processor.

it slab.

put slab.

NRL REPORT 9167

(:conc-name bundle-)
(:constructor fe-make-bundle-internal)
(:print-function print-bundle)
)

no ; bundle id
to-slab ; connections to slab
from-slab ;connections from slab
density ; density of connections, 0-100%.
size ; no of connections

connection = (to-no,from-no)
to-no ; array of to-slab unit ids
from-no ; array of from-slab unit ids
)

PRINT-BUNDLE prints BUNDLE on STREAM.

(defun print-bundle (bundle stream toptional depth)
(declare (ignore depth))
(format stream '"<Bundle -a <- a, -a%>"

(slab-no (bundle-to-slab bundle))
(slab-no (bundle-from-slab bundle))
(bundle-density bundle)))

BUNDLE-NO!! returns a bundle-no-pvar pvar containing the BUNDLE id in each processor.

(defmacro bundle-no!! (bundle)
'(the bundle-no-pvar (!! (bundle-no ,bundle))))

Neural net

(defstruct (neural-net
#+:symbolics
(:named)
(:conc-name net-)
(:constructor fe-make-net-internal)
(:print-function print-net)
)

name
type ; CONTINOUS-MAPPING or ASSOCIATIVE-MEMORY

slabs ; array of slabs
input-slab-no ; input slab id
output-slab-no ; output slab id
bundles , array of bundles
no-units ; total number of units
no-connect ions connect ions
no-processors processors

(a 1.0) ; dynamical system equation constants
(b 1.0)

(eta 0.25) ; learning rate
(alpha 0.9) ; momentum term

(epsilon-x 0.001) ; feed-forward convergence criterion
(x-iterations 4) ; min iterations before convergence test
(epsilon-y 0.001) ; back-propagate convergence criterion
(y-iterations 4) ; min iterations before convergence test
(epsilon-w 0.1) ; weight update convergence criterion
(max-updates 10000) ; max weight updates in training
)

PRINT-NET prints NET on STREAM.

(defun print-net (net stream &optional depth tkey verbose-p)
(declare (ignore depth))
(if (not verbose-p)

(format stream

43

E. M. DEPRIT

"#<Net -a -a slab-:*1[s-;-:;si], -a bundleh:*-[s-;-:;stl>"
(net-name net)
(length (net-slabs net))
(length (net-bundles net)))

(format stream "%-a net: -a" (net-type net) (net-name net))
(format stream "-2%-a slab-:*4[s-;-:;si , -a bundleh:*-[s-;-:;s-l"

(length (net-slabs net)) (length (net-bundles net)))
(format stream "%-a unit-:*1[s7;-:;stl, -a connection-:*[s7;:;sa ->

-a processor-:*-[s-;-:;s-]"
(net-no-units net) (net-no-connections net) (net-no-processors net))

(format stream "-2/a = -a, b = -a" (net-a net) (net-b net))
(format stream "2%Feed-forward convergence = -a, min -a iteratioiC :* [s ;7:;stI"

(net-epsilon-x net) (net-x-iterations net))
(format stream "-%Back-propagate convergence = -a, min -a iteration-:*i[s-;-:;s-]"

(net-epsilon-y net) (net-y-iterations net))

(format stream "2%eta = -a, alpha = -a" (net-eta net) (net-alpha net))
(format stream "%Weight update convergence = -a, max -a iteration-:*1[s-;V:;s-]`

(net-epsilon-w net) (net-max-updates net))
(terpri stream)

)

GET-SLAB returns the slab with id SLAB-NO in NET.

(defmacro get-slab (net slab-no)
'(aref (net-slabs ,net) ,slab-no))

GET-INPUT-SLAB returns the input slab in NET.

(defmacro get-input-slab (net)
'(aref (net-slabs ,net) (net-input-slab-no ,net)))

GET-OUTPUT-SLAB returns the output slab in NET.

(defmacro get-output-slab (net)
'(aref (net-slabs ,net) (net-output-slab-no ,net)))

GET-BUNDLE returns the bundle with id BUNDLE-NO in NET.

(defmacro get-bundle (net bundle-no)
'(aref (net-bundles ,net) ,bundle-no))

MEMORY-NETP returns T if NET is an ASSOCIATIVE-MEMORY net.

(defmacro memory-netp (net)
'(eq (net-type ,net) 'associative-memory))

;;; EOF

#+:ccl
(format t "%\"Net FE Structures\" loaded")

*- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -*-

(in-package '*lisp)

;;Etienne Deprit
Naval Research Lab, Code 8242;;;~~~~Lb

44

NRL REPORT 9167

;;; Nettalk Implementation

;;; Net CM Structures

; Net

(*proclaim '(type boolean-pvar netp!!))

(*defvar netp!! nil!!)

; Units

(*proclaim '(type boolean-pvar unitp!!))
(*proclaim '(type boolean-pvar inputp!!))
(*proclaim '(type boolean-pvar outputp!!))
(*proclaim '(type slab-no-pvar slab-no!!))
(*proclaim '(type unit-no-pvar unit-no!!))

(*defvar unitp!! nil!!)
(*defvar inputp!! nil!!)
(*defvar outputp!! nil!!)
(*defvar slab-no!!)
(*defvar unit-no!!)

; processor is unit?

; input unit?
; output unit?
; unit slab id
; unit id

; Variables appearing in feed-forward and back-propagation equations

(*proclaim '(type
(*proclaim '(type
(*proclaim '(type
(*proclaim '(type
(*proclaim '(type
(*proclaim '(type
(*proclaim '(type
(*proclaim '(type
(*proclaim '(type
(*proclaim '(type
(*proclaim '(type
(*proclaim '(type

single-float-pvar a!!))
single-float-pvar b!!))
single-float-pvar X!!))
single-float-pvar Z!!))

single-float-pvar dX!!))
single-float-pvar U!!))
single-float-pvar LogU!!))
single-float-pvar I!!))
single-float-pvar Y!!))
single-float-pvar dY!!))
single-float-pvar V!!))
single-float-pvar 3!!))

(*defvar a!!)
(*defvar b!!)
(*defvar X!!)
(*defvar Z!!)
(*defvar dX!!)
(*defvar U!!)
(*defvar LogU!!)
(*defvar I!!)
(*defvar Y!!)
(*defvar dY!!)
(*defvar V!!)
(*defvar 3!!)

(*proclaim '(type single-float-pvar epsilon-x!!))
(*proclaim '(type single-float-pvar epsilon-y!!))

(*defvar epsilon-x!!)
(*defvar epsilon-y!!)

; Connections

(*proclaim '(type boolean-pvar fan-inp!!
(*proclaim '(type boolean-pvar fan-outp!!))

45

; processor in net?

feed-forward convergence criterion
back-propagate convergence criterion

E. M. DEPRIT

bundle-no-pvar bundle-no!!))
connection-no-pvar connection-no!!))
slab-no-pvar to-slab-no!!))
unit-no-pvar to-unit-no!!))
slab-no-pvar from-slab-no!!))
unit-no-pvar from-unit-no!!))
cube-address-pvar from-addr!!))
cube-address-pvar to-addr!!))

(*defvar fan-inp!! nil!!)
(*defvar fan-outp!! nil!!)
(*defvar bundle-no!!)
(*defvar connection-no!!)
(*defvar to-slab-no!!)
(*defvar to-unit-no!!)
(*defvar from-slab-no!!)
(*defvar from-unit-no!!)
(*defvar from-addr!!)
(*defvar to-addr!!)

(*proclaim '(type
(*proclaim '(type
(*proclaim '(type

(*defvar W!!)
(*defvar dW!!)
(*defvar dWold!!)

(*proclaim '(type
(*proclaim '(type
(*proclaim '(type

; fan-in weight?
; fan-out weight?
; connection bundle id
; connection id

; to slab id
; to unit id
; from slab id
; from unit id
; cube address of from unit
; cube address of to unit

single-float-pvar W!!))
single-float-pvar dW!!))
single-float-pvar dWold!!))

; connection weight
; current weight change
; last weight change (momentum term)

single-float-pvar
single-float-pvar
single-float-pvar

(*defvar epsilon-w!!)
(*defvar eta!!)
(*defvar alpha!!)

epsilon-w!!))
eta!!))
alpha!!))

; weight update convergence criterion
; learning rate
; momentum term

; Fan-in & Fan-out Segments

(*proclaim '(type boolean-pvar forward-fan-in-seg!!))
(*proclaim '(type boolean-pvar forward-fan-out-seg!!))
(*proclaim '(type boolean-pvar backward-fan-in-seg!!))
(*proclaim '(type boolean-pvar backward-fan-out-seg!!))

(*defvar forward-fan-in-seg!!)
(*defvar forward-fan-out-seg!!)
(*defvar backward-fan-in-seg!!)
(*defvar backward-fan-out-seg!!)

; feed-forward fan-in weights
; feed-forward fan-out weights
; back-propagate fan-in weights
; back-propagate fan-out weights

;;; EOF

#+: ccl
(format t "'-%\"CM Net Structures\" loaded")

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -*-

(in-package '*lisp)

;;; Etienne Deprit
;;; Naval Research Lab, Code 8242

;;;

46

(*proclaim
(*proclaim
(*proclaim
(*proclaim
(*proclaim
(*proclaim
(*proclaim
(*proclaim

'(type
'(type

'(type
'(type
'(type
'(type
'(type
'(type

NRL REPORT 9167

;;;Nettalk Implementation

Make Net Structures on Front-End

Front-End slab structure

FE-MAKE-SLAB returns a net slab of SIZE units with id NO. INPUTP and OUTPUTP
indicate if this slab is the input or output slab, respectively.

(defun fe-make-slab (no size inputp outputp)
(fe-make-slab-internal :no no

:size size
:inputp inputp
:outputp outputp))

Front-End bundle structure

RANDOM-CONNECTIONS returns ROW number and COL number arrays representing a bundle
of connections to a slab of TO-SIZE units from a slab of FROM-SIZE units.
Each possible connection is formed with probability given by DENSITY.

(defun random-connections (to-size from-size density)
(let (n row col)

(setf density (/ density 100.0))
(*all

(*let ((rendezvous!! (!! 0)))

(declare (type cube-address-pvar rendezvous!!))
(*when (and!! (<!! (self-address!!)

(the max-int-pvar (!! (* to-size from-size))))
(<!! (random-float!! (!! 0.5) C!! 0.5))

(the float-pvar (!! density))))
(setf n (count-css))
(*pset :no-collisions

(self-address!!)
rendezvous!!
(enumerate!!)))

(setf row (make-array n)
col (make-array n))

(pvar-to-array (truncate!! rendezvous!! (!! from-size))
row
:cube-address-end n)

(pvar-to-array (mod!! rendezvous!! (!! from-size))
col
:cube-address-end n)))

(values row col)))

FE-MAKE-BUNDLE returns a bundle with id NO connecting TO-SLAB and FROM-SLAB
with the probability of each connection given by DENSITY.

(defun fe-make-bundle (no to-slab from-slab density)
(let ((bundle (fe-make-bundle-internal

:no no

:to-slab to-slab
:from-slab from-slab
:density density)))

(multiple-value-setf
((bundle-to-no bundle)
(bundle-from-no bundle))
(random-connections (slab-size to-slab)

(slab-size from-slab)
density))

(setf (bundle-size bundle) (length (bundle-to-no bundle)))
bundle))

Front-End net structure

47

E. M. DEPRIT

A bundle spec is a list of the form (<to slab id> <from slab id> <density>).

(defstruct (bundle-spec
(:type list))

to-slab
from-slab
density)

FE-MAKE-NET returns the net NAME of the given TYPE (CONTINOUS-MAPPING or
ASSOCIATIVE-MEMORY). SLABS must be a list of total units in each slab, and
INPUT-SLAB-NO and OUTPUT-SLAB-NO identify the input and output slabs,
respectively. BUNDLES must be a list of bundle specifications. Additional
keyword arguments are passed in to FE-MAKE-NET-INTERNAL allowing other
net parameters to be set.

(defun fe-make-net (name type slabs input-slab-no output-slab-no bundles
&rest other-net-keys &key &allow-other-keys)

(let ((net (apply t'fe-make-net-internal
:name (string name)
:type type
:input-slab-no input-slab-no
:output-slab-no output-slab-no
other-net-keys)))

(let ((slab-no -1))
(setf (net-slabs net)

(map 'array
#'(lambda (slab-size)

(fe-make-slab (incf slab-no)
slab-size
(eq input-slab-no slab-no)
(eq output-slab-no slab-no)))

slabs)))
(let ((bundle-no -1))

(setf (net-bundles net)
(map 'array

*'(lambda (bundle)
(fe-make-bundle (incf bundle-no)

(get-slab net (bundle-spec-to-slab bundle))
(get-slab net (bundle-spec-from-slab bundle))
(bundle-spec-density bundle)))

bundles)))
(fe-size-net net)
net))

FE-SIZE-NET sets the total number of units, connections and processors required by NET.

(defun fe-size-net (net)
(setf (net-no-units net)

(reduce #'+
(map 'list *'slab-size (net-slabs net)))

(net-no-connections net)
(reduce *'+

(map 'list *'bundle-size (net-bundles net)))
(net-no-processors net)
(+ (net-no-units net)

(* 2 (net-no-connections net)))))

CONTINUOUS-MAPPING net

DEF-MAPPING-NET returns a CONTINUOUS-MAPPING net called NAME specified by
the keyword argguments SLABS, INPUT-SLAB-NO, OUTPUT-SLAB-NO and BUNDLES.
Additional keyword arguments can be used to specify other net parameters.

(defmacro def-mapping-net (name &rest other-net-keys
&key slabs input-slab-no output-slab-no bundles
tallow-other-keys)

'(progn
(defvar ,name)
(setf ,name (fe-make-net ',name

48

NRL REPORT 9167

'continuous-mapping
,slabs
,input-slab-no
,output-slab-no
,bundles
,Oother-net-keys))

(cm-net-cold-boot ,name)
(cm-make-net ,name)))

ASSOCIATIVE-MEMORY net

DEF-MEMORY-NET returns an ASSOCIATIVE-MEMORY net called NAME specified by
the keyword argguments SLABS, INPUT-SLAB-NO and BUNDLES. Additional keyword
arguments can be used to specify other net parameters.

(defmacro def-memory-net (name trest other-net-keys
&key slabs input-slab-no bundles
tallow-other-keys)

'(progn
(defvar ,name)
(setf ,name (fe-make-net ',name

'associative-memory
,slabs
,input-slab-no
,input-slab-no
,bundles
,@other-net-keys))

(cm-net-cold-boot ,name)
(cm-make-net ,name)))

;;; EOF

#+:ccl
(format t "-%\"FE Make Net\" loaded")

-*- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -*-

(in-package '*lisp)

Etienne Deprit
Naval Research Lab, Code 8242

Nettalk Implementation

Make Net Structures on CM

CM slab structure

CM-MAKE-SLAB creates the structure for SLAB on the CM.

(defun cm-make-slab (slab)
(let ((slab-size (slab-size slab)))
(with-n-proc-allocated (slab-size slab-start)

(*set netp!! t!!
unitp!! t!!
inputp!! (slab-inputp!! slab)
outputp!! (slab-outputp!! slab)

49

E. M. DEPRIT

slab-no!! (slab-no!! slab)
unit-no!! (enumerate!!))))

slab)

CM bundle structure

CM-MAKE-BUNDLE creates the structure for BUNDLE on the CM.
IN-OUT may specify a bundle of FAN-IN or FAN-OUT weights.

(defun cm-make-bundle (bundle in-out)
(assert (member in-out '(:fan-in :fan-out))

(in-out)
"IN-OUT must be :FAN-IN or :FAN-OUT")

(let ((to-slab (bundle-to-slab bundle))
(from-slab (bundle-from-slab bundle))
(bundle-size (bundle-size bundle)))

(with-n-proc-allocated (bundle-size bundle-start)
(*set netp!! t!!

bundle-no!! (bundle-no!! bundle)
connection-no!! (enumerate!!)
to-slab-no!! (slab-no!! to-slab)
from-slab-no!! (slab-no!! from-slab))

(if (eq in-out :fan-in)
(*set fan-inp!! t!!)
(*set fan-outp!! t!!))

(array-to-pvar (bundle-to-no bundle)
to-unit-no!!
:cube-address-start bundle-start
:cube-address-end (+ bundle-start bundle-size))

(array-to-pvar (bundle-from-no bundle)
from-unit-no!!
:cube-address-start bundle-start
:cube-address-end (+ bundle-start bundle-size))))

bundle)

CM net structure

CM-NET-COLD-BOOT cold boots the CM with the dimensions necessary for NET.

(defun cm-net-cold-boot (net)
(let ((cm-dims (cm-best-fit-dims (net-no-processors net))))
(or cm-dims

(error "Net -a too large for CM" (net-name net)))
(*cold-boot :initial-dimensions cm-dims)))

CM-HAKE-NET creates the structure for NET on the CM.

(defun cm-make-net (net)
(map nil t'(lambda (bundle)

(cm-make-bundle bundle :fan-in))
(net-bundles net))

(map nil *'(lambda (slab)
(cm-make-slab slab))

(net-slabs net))
(map nil #'(lambda (bundle)

(cm-make-bundle bundle :fan-out))
(net-bundles net))

(cm-sort-net net)
(*all

(*when unitp!!
(*set a!! (the float-pvar (!! (net-a net)))

b!! (the float-pvar (!! (net-b net)))
epsilon-x!! (the float-pvar (!! (net-epsilon-x net)))
epsilon-y!! (the float-pvar (!! (net-epsilon-y net))))

(*when outputp!!

50

NRL REPORT 9167

(*set epsilon-w!! (the float-pvar (! (net-epsilon-w net))))))
(*when fan-outp!!

(*set eta!! (the float-pvar (!! (net-eta net)))
alpha!! (the float-pvar (!! (net-alpha net))))))

(cm-make-segments)
(cm-reset-weights)
net)

Sort CM net structures

CM-SORT-NET sorts the structures of NET on the CM to establish the
proper interleaving of fan-in weights, units and fan-out weights.

(defun cm-sort-net (net)
(*all

(*let (key!!
rank!!)

(declare (type (pvar (unsigned-byte (+ *slab-no-size* *unit-no-size*))) key!!))
(declare (type cube-address-pvar rank!!))
(*when (or!! unitp!! fan-inp!! fan-outp!!)

(*set key!!
(cond!! (fan-inp!! to-slab-no!!)

(unitp!! slab-no!!)
(fan-outp!! from-slab-no!!)
Wt! (!! OM))

(*set key!! (ash!! key!! (the unit-no-pvar (!! *unit-no-size*))))
(*set key!!

(+!! key!!
(cond!! (fan-inp!! to-unit-no!!)

(unitp!! unit-no!!)
(fan-outp!! from-unit-no!!)
(t!! (!! OM)))

(*set rank!! (rank!! key!! '<=!!))

(cm-sort-units rank!!)
(cm-sort-connections rank!!)

(map nil t'cm-link-bundle (net-bundles net))

net)

CM-SORT-UNITS copies the units to the cube addresses in TO-ADDR!!.

(defun cm-sort-units (to-addr!!)
(declare (type cube-address-pvar to-addr!!))
(*when unitp!!
(*set unitp!! nil!!)
(*pset :no-collisions t!! unitp!! to-addr!!)
(*when inputp!!

(*set inputp!! nil!!)
(*pset :no-collisions t!! inputp!! to-addr!!))

(*when outputp!!
(*set outputp!! nil!!)
(*pset :no-collisions t!! outputp!! to-addr!!))

(*pset :no-collisions slab-no!! slab-no!! to-addr!!)
(*pset :no-collisions unit-no!! unit-no!! to-addr!!)

CM-SORT-CONNECTIONS copies the fan-in and fan-out weights to
the cube addresses in TO-ADDR!!.

(defun cm-sort-connections (to-addr!!)
(declare (type cube-address-pvar to-addr!!))
(*when (or!! fan-inp!! fan-outp!!)
(*when fan-inp!!
(*set fan-inp!! nil!!)
(*pset :no-collisions t!! fan-inp!! to-addr!!))

51

E. M. DEPRIT

(*when fan-outp!!
(*set fan-outp!! nil!!)
(*pset :no-collisions t!! fan-outp!! to-addr!!))

(*pset :no-collisions bundle-no!! bundle-no!! to-addr!!)
(*pset :no-collisions connection-no!! connection-no!! to-addr!!)
(*pset :no-collisions to-slab-no!! to-slab-no!! to-addr!!)
(*pset :no-collisions to-unit-no!! to-unit-no!! to-addr!!)
(*pset :no-collisions from-slab-no!! from-slab-no!! to-addr!!)
(*pset :no-collisions from-unit-no!! from-unit-no!! to-addr!!)

CM-LINK-BUNDLE links the fan-in and fan-out weights of BUNDLE.

(defun cm-link-bundle (bundle)
(let ((to-slab (bundle-to-slab bundle))

(from-slab (bundle-from-slab bundle)))
(*all

(*let (in-rendezvous!!
out-rendezvous!!)

(declare (type cube-address-pvar in-rendezvous!! out-rendezvous!!))
(*when (and!! (or!! fan-inp!! fan-outp!!)

(=!! to-slab-no!! (the slab-no-pvar (!! (slab-no to-slab))))
(=!! from-slab-no!! (the slab-no-pvar (!! (slab-no from-slab)))))

(*when fan-inp!!
(*pset :no-collisions (self-address!!) in-rendezvous!! connection-no!!))

(*when fan-outp!!
(*pset :no-collisions (self-address!!) out-rendezvous!! connection-no!!))

(*when fan-inp!!
(*set from-addr!!

(the cube-address-pvar
(pref!! out-rendezvous!! connection-no!!

:collision-mode :no-collisions))))
(*when fan-outp!!
(*set to-addr!!

(the cube-address-pvar
(pref!! in-rendezvous!! connection-no!!

:collision-mode :no-collisions))))

Make CM segments for feed-forward and back-propagate cycles.

CM-MAKE-SEGMENTS makes the segments pvars used during scanning operations
in the feed-forward and back-propagate cycles.

(defun cm-make-segments 0
(*when netp!!

(*set forward-fan-out-seg!! (or!! unitp!! fan-inp!!)
forward-fan-in-seg!!
(or!! (scan!! (or!! unitp!! fan-outp!!) 'and!!

:segment-pvar (or!! unitp!! fan-outp!!)
:include-self nil)

fan-outp!!)
backward-fan-in-seg!! (or!! unitp!! fan-outp!!)
backward-fan-out-seg!!
(or!! (scan!! (or!! unitp!! fan-inp!!) 'and!!

:segment-pvar (or!! unitp!! fan-inp!!)
:direction :backward
:include-self nil)

fan-inp!!))

CM-RESET-WEIGHTS resets the fan-out weights for each connection in the net
to a random float in the interval [mean-interval , mean+interval].

(defun cm-reset-weights (toptional (mean 0.0) (interval 0.5))
(declare (type float mean interval))

52

NRL REPORT 9167

(*when fan-outp!!
(*set W!! (random-float!!

(the float-pvar (!! mean))
(the float-pvar C!! interval))))))

EOF

1+:ccl
(format t "-%\"CM Make Net\" loaded")

a- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -a-

(in-package '*lisp)

;;;Etienne Deprit
Naval Research Lab, Code 8242

;;;Nettalk Implementation

CM Net Access

Slab Access

GET-SLAB-PVAR returns an array containing the values of PVAR
for the slab with id SLAB-NO in NET.

(defun get-slab-pvar (net slab-no pvar)
(let ((slab (get-slab net slab-no)))
(*all
(*let (mail-box!!)

(*when (and!! unitp!! (=!! slab-no!! (slab-no!! slab)))
(*pset :no-collisions pvar mail-box!! (enumerate!!))
(pvar-to-array mail-box!! (make-array (slab-size slab))

:cube-address-end (count-css)))))))

GET-SLAB-X returns an array containing the values of X!!
for the slab with id SLAB-NO in NET.

(defmacro get-slab-X!! (net slab-no)
'(get-slab-pvar ,net ,slab-no X!!))

GET-NET-OUTPUT returns an array containing the output values of NET.

(defmacro get-net-output (net)
'(get-slab-X!! ,net (net-output-slab-no ,net)))

Bundle Access

GET-BUNDLE-PVAR returns an array containing the values of PVAR
for the bundle with id BUNDLE-NO in NET.

(defun get-bundle-pvar (net bundle-no pvar)
(let ((bundle (get-bundle net bundle-no)))
(*all
(*let (mail-box!!)

53

E. M. DEPRIT

(*when (and!! fan-outp!! (=!! bundle-no!! (bundle-no!! bundle)))
(*pset :no-collisions pvar mail-box!! (enumerate!!))
(pvar-to-array mail-box!! (make-array (bundle-size bundle))

:cube-address-end (count-css)))))))

GET-BUNDLE-W returns an array containing the values of W!!
for the bundle with id BUNDLE-NO in NET.

(defmacro get-bundle-W!! (net bundle-no)
'(get-bundle-pvar ,net ,bundle-no W!!))

;;; EOF

#+:ccl
(format t "-%\"CM Net Access\" loaded")

-a- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -*-

(in-package '*lisp)

Etienne Deprit
Naval Research Lab, Code 8242

Nettalk Implementation

Training Sets

Training Examplar

(defstruct (examplar
(:type list))

input-pvar
input-vec
target-pvar
target-vec)

Training Set

(defstruct (training-set
(:type list))

type ; MAPPING-SET or MEMORY-SET
name
examplars) ; list of examplars

GET-EXAMPLAR returns the examplar with id EXAMPLAR -NO in TRAINING-SET.

(defmacro get-examplar (training-set examplar-no)
'(nth ,examplar-no (training-set-examplars ,training-set)))

CM-LOAD-TRAINING-PAIR loads the INPUT/TARGET training vectors into the
CONTINUOUS-MAPPING net structure on the CM and returns an examplar
containing the INPUT and TARGET vectors. The pvars corresponding
to the training pair are marked with the given SET-NAME and PAIR-NO.

(defun cm-load-training-pair (set-name pair-no input target)
(*all

(let ((input!! (allocate!! nil
(format nil "a-a-I" set-name pair-no)
'float-pvar))

54

NRL REPORT 9167

(target!! (allocate!! nil
(format nil "a--a-T" set-name pair-no)
'float-pvar)))

(*let (mail-box!!)
(declare (type float-pvar mail-box!!))
(array-to-pvar input mail-box!! :cube-address-end (length input))
(*when inputp!!
(*set (the float-pvar input!!)

(pref!! mail-box!! unit-no!! :collision-mode :no-collisions)))
(array-to-pvar target mail-box!! :cube-address-end (length target))
(*when outputp!!
(*set (the float-pvar target!!)

(pref!! mail-box!! unit-no!! :collision-mode :no-collisions))))
(list input!! input target!! target))))

CM-LOAD-MAPPING-SET loads the TRAINING-PAIRS labeled SET-NAME into the
CONTINUOUS-MAPPING net structure on the CM and returns the resulting
training set. TRAINING-PAIRS must be a list of input/target vector lists.

(defun cm-load-mapping-set (set-name training-pairs)
(let ((pair-no -1))

(list 'mapping-set set-name
(mapcar #'(lambda (pair)

(cm-load-training-pair set-name
(incf pair-no)
(first pair)
(second pair)))

training-pairs))))

CM-LOAD-MEMORY-INPUT loads the INPUT vector into the CONTINUOUS-MAPPING
net structure on the CM and returns an examplar. The pvar corresponding
to the INPUT vector is marked with the given SET-NAME and INPUT-NO.

(defun cm-load-memory-input (set-name input-no input)
(*all
(let ((input!! (allocate!! nil

(format nil "a--a-I" set-name input-no)
'float-pvar)))

(*let (mail-box!!)
(declare (type float-pvar mail-box!!))
(array-to-pvar input mail-box!! :cube-address-end (length input))
(*when inputp!!
(*set (the float-pvar input!!)

(pref!! mail-box!! unit-no!! :collision-mode :no-collisions))))
(list input!! input input!! input))))

CM-LOAD-MEMORY-SET loads the TRAINING-LIST labeled SET-NAME into the
CONTINOUS-MAPPING net structure on the CM and returns the resulting
training set. The TRAINING-LIST must be a list of input vectors.

(defun cm-load-memory-set (set-name training-set)
(let ((input-no -1))

(list 'memory-set set-name
(mapcar *'(lambda (input)

(cm-load-memory-input set-name
(incf input-no)
input))

training-set))))

CM-UNLOAD-TRAINING-SET unloads TRAINING-SET from the CONTINUOUS-MAPPING or
ASSOCIATIVE-MEMORY net structure on the CM. The pvars in the TRAINING-SET
array are deallocated and should no longer be accessed.

(defun unload-training-set (training-set)
(let ((type (training-set-type training-set)))
(map nil

X'(lambda (examplar)
(*deallocate (examplar-input-pvar examplar))
(if (eq type 'mapping-set)

55

E. M. DEPRIT

(*deallocate (examplar-target-pvar examplar))))
(training-set-examplars training-set))))

PRINT-TRAINING-SET prints the TRAINING-SET's input/target or
input vectors for a MAPPING-SET or MEMORY-SET, respectively.

(defun print-training-set (training-set)
(let ((type (training-set-type training-set)))
(format t "-2%-a: -a" type (training-set-name training-set))
(map nil

V'(lambda (examplar)
(format t %-i: ") (print-vec (examplar-input-vec examplar))
(when (eq type 'mapping-set)
(format t " t: ") (print-vec (examplar-target-vec examplar))))

(training-set-examplars training-set))))

EOF

#+:ccl
(format t -%\"Training SetsV' loaded")

-*- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -*-

(in-package '*lisp)

Etienne Deprit
Naval Research Lab, Code 8242

Nettalk Implementation

Net Learning

DEBUG-LEARNING sets toggles the :NET-DEBUG flag in the features list.

(defun debug-learning (Uoptional (debug-on t))
(if debug-on

(pushnew :net-debug *features*)
(setf *features* (delete :net-debug *features*))))

Scalar LOGISTIC function

(defun logistic (x)
(/ (1+ (exp (- x)))))

Parallel LOGISTIC function

(defmacro logistic!! (x!!)
'(/!! (the single-float-pvar (1+!! (exp!! (-!! ,x!!))))))

Scalar LOGISTIC derivative

(defun dLogistic (x)
(let ((logistic (logistic x)))
(* logistic (- 1 logistic))))

Parallel LOGISTIC derivative

(defmacro dLogistic!! (x!!)
(let ((logistic!! (gensym)))

56

NRL REPORT 9167

'(*let ((,logistic!! (logistic!! ,x!!)))
(declare (type float-pvar ,logistic!!))
(a!! logistic!! (-!! C!! 1) logistic!!))))

*NORM of pvar

(defmacro *norm (x!!)
'(sqrt (*sum (*!! ,x!! ,x!!))))

Feed-forward

FEED-FORWARD computes a single feed-forward cycle of NET with the given INPUT!!.
If NET is an ASSOCIATIVE-MEMORY net and LATCHED-P is T, then FEED-FORWARD
operates on the master network rather than the slave network.

(defun feed-forward (net input!! tkey latched-p)
(*all

(*when netp!!
(*when unitp!!
(*set I!! (!! 0.0)

X!! (!! 0.5)

dX!! (!! 0.5))
(*when inputp!!
(if (memory-netp net)

(*set X!! (the float-pvar input!!))
(*set I!! (the float-pvar input!!))))

(*set Z!! X!!))
(*set Z!! (scan!! Z!! 'copy!! :segment-pvar forward-fan-out-seg!!))

(do (
((*when unitp!! (*and C<!! (abs!! dX!!) epsilon-x!!))))

(dotimes (i (net-x-iterations net))
*+:net-debug
(progn

(format-pvars CU!! LogU!! dX!! X!! Z!!))
(format t "-%Bit any key to continue: ") (read-char))

(*when fan-outp!!
(*set U!! (*!! W!! Z!!))
(*pset :no-collisions U!! U!! to-addr!!))

(*when unitp!!
(*set U!! C!! 0.0)))

(*set U!! (scan!! U!! '+!! :segment-pvar forward-fan-in-seg!!))
(*when unitp!!
(*set LogU!! (logistic!! U!!)

dX!! (+!! (*!! a!! (-!! X!!)) (*!! b!! LogU!!) I!!)
X!! (+!! X!! dX!!)
Z!! X!!)

(if latched-p
(*when inputp!!
(*set Z!! (the float-pvar input!!)))))

(*set Z!! (scan!! Z!! 'copy!! :segment-pvar forward-fan-out-seg!!))

Back-Propagate

BACK-PROPAGATE computes a single back-propagation cycle of NET with the given TARGET!!.

(defun back-propagate (net target!!)
(*all
(*when netp!!
(*when unitp!!

57

E. M. DEPRIT

(*if outputp!!
(*set J!! (-!! (the float-pvar target!!) X!!))

(*set J!! (!! 0.0))))
(*when (or!! unitp!! fan-outp!!)
(*set Y!! C!! 0.0))
(*set dY!! C!! 0.5)))

(do C)
((*when unitp!! (*and (<!! (abs!! dY!!) epsilon-y!!))))

(dotimes (i (net-y-iterations net))
#+:net-debug
(progn

(format-pvars (LogU!! V!! dY!! Y!!))
(format t "%-Hit any key to continue: ") (read-char))

(*when fan-outp!!
(*set V!! (*!! W!! Y!!)))

(*when unitp!!
(*set V!! C!! 0.0)))

(*set V!! (scan!! V!! '+!!
:segment-pvar backward-fan-out-seg!!
:direction :backward))

(*when unitp!!
(if (memory-netp net)

(*when inputp!!
(*set V!! C!! 0.0))))

(*set dY!! C+!! (a!! a!! (-!! Y!!))
(a!! b!! LogU!! (-!! C!! 1.0) LogU!!)

(+!! V!! J!)))
Y!! (+!! Y!! dY!!)))

(*set Y!! (scan!! Y!! 'copy!!
:direction :backward
:segment-pvar backward-fan-in-seg!!))

X+:*lisp-simulator
(progn (*when fan-inp!!

(*pset :no-collisions Y!! V!! from-addr!!))
(*when fan-outp!!
(*set Y!! V!!)))

#+:*lisp-hardware
(*when fan-inp!!

(*pset :no-collisions Y!! Y!! from-addr!!))

Gradient Update

GRADIENT-UPDATE increments the current weight-space gradient.

(defun gradient-update C)
(*when fan-outp!!

(*set dW!!

(+!! dW!! (*!! Y!! Z!!)))))

Weight Update

WEIGHT-UPDATE updates the connection weights using the current and last gradients.

(defun weight-update C)
(*when fan-outp!!

(*set W!! (+!! W!!

(a!! eta!! dW!!)

Ca!! alpha!! dWold!!))
dWold!! dW!!)))

58

NRL REPORT 9167

Net Training

STEEPEST-DESCENT performs a true steepest-descent adjustment of the connection weights
for the input/target pairs in TRAINING-SET. STEEPEST-DESCENT returns T or NIL
indicating if TRAINING-SET has been learned within the weight update criterion and
the current target error. If provided, the PRINT-NET-ID function is called to report
the net's input and output.

(defun steepest-descent (net training-set tkey print-net-io)
(let (Clearned-p t)

(target-error 0.0))
(*all
(*when fan-outp!!
(*set dW!! (!! 0.0)))

(dolist (examplar (training-set-examplars training-set))

(feed-forward net (examplar-input-pvar examplar) :latched-p (memory-netp net))
(back-propagate net (examplar-target-pvar examplar))
(*when outputp!!

(setf learned-p
(and learned-p

(*and (<!! (abs!! J!!) epsilon-w!!))))
(incf target-error (*norm J!!)))

(if print-net-io
(funcall print-net-io (examplar-input-vec examplar) (get-net-output net)))

(gradient-update))

(weight-update))

(values learned-p target-error))

TRAIN-NET trains NET using the given TRAINING-SET. If specified, PRINT-TRAINING-SET
is called to print the current TRAINING-SET. In addition, PRINT-NET-IO may be used
to report the net's input and output each PRINT-INTERVAL iterations.

(defun train-net (net training-set tkey print-training-set print-interval print-net-io)
(format t "-2%Net Training%")
(print-net net t nil :verbose-p t)
(if print-training-set

(funcall print-training-set training-set))

(*all
(*when fan-outp!!

(*set dWold!! (!! 0.0))))

(do ((iteration 0 (1+ iteration))
(learned-p nil)
target-error
(print-net-io-p print-interval

(and print-interval
(zerop (mod (1+ iteration) print-interval)))))

((or learned-p
(and (net-max-updates net)

(= iteration (net-max-updates net))))
(format t "-2%Training set -:[not -;-]learned after -a iterationa:*i[s-;-:;s-].-%"

learned-p iteration)
(when (and print-interval print-net-io)

(map nil *'(lambda (examplar)
(feed-forward net (examplar-input-pvar examplar))
(funcall print-net-io

(examplar-input-vec examplar)
(get-net-output net)))

59

E. M. DEPRIT

(training-set-examplars training-set))
(format t "-%Error = -a" target-error)))

(if print-net-io-p
(format t "2%Iteration -a" iteration))

(multiple-value-setf
(learned-p target-error)
(steepest-descent net

training-set
:print-net-io (if print-net-io-p print-net-io)))

(if print-net-io-p
(format t "-%Error = -a" target-error))

(values))

;;; EOF

#+:ccl
(format t "-/\"Net Learning\" loaded")

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -*-

(in-package '*lisp)

;;; Etienne Deprit
;;; Naval Research Lab, Code 8242

;;; Nettalk Implementation

;;; OR Test Nets
.. .

; IOR Continuous Mapping Net

(def-mapping-net or-mapping-net
:slabs '(2 1 1 1)
:input-slab-no 0
:output-slab-no 2
:bundles '((1 0 100)

(2 0 100)
(2 1 100)
(1 3 100)

(2 3 100)

(3 3 100)

(defvar *ior-mapping-pairs*)
(setf *ior-mapping-pairs*

(list-to-array-pairs '(((0.0 0.0) (0.0))
((0.0 1.0) (1.0))
((1.0 0.0) (1.0))
M(.0 1.0) (1.0)))))

(defvar *ior-mapping-set*)

60

NRL REPORT 9167

(setf *ior-mapping-set*
(cm-load-mapping-set 'ior-mapping-set *ior-mapping-pairs*))

(train-net or-mapping-net
ior-mapping-set
:print-training-set 3'print-training-set
:print-interval 10
:print-net-io 3'print-io-vecs)

XOR Associative Memory Net

(1-f-memory-net or-memory-net
:slabs '(3 1)
:input-slab-no 0
:bundles 'CCO 0 100)

(O 1 100)
(C 1 100)

)
.epsilon-w 0.05
)

(defvar *xor-memory-list*)
(setf *xor-memory-list*

(list-to-array '((O.0 0.0 0.0)
(0.0 1.0 1.0)
(1.0 0.0 1.0)
(1.0 1.0 0.0))))

(defvar *xor-memory-set*)
(setf *xor-memory-set*

(cm-load-memory-set 'xor-memory-set *xor-memory-list*))

(train-net or-memory-net
*xor-memory-seta
:print-training-set #'print-training-set
:print-interval 20
:print-net-io X'print-io-vecs)

;;; EOF

#+:ccl
(format t "-V\"Test Nets\" loaded")

-a- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -a-

(in-package '*lisp)

Etienne Deprit
Naval Research Lab, Code 8242

Nettalk Implementation

Time Nets

CM-TIME-AND-PRINT times the execution of FORM and reports the timing statistics.

61

E. M. DEPRIT

(defmacro cm-time-and-print (form)
(let ((elapsed-time (gensym))

(cm-time (gensym))
(percent (gensym)))

'(multiple-value-bind (,elapsed-time ,cm-time ,percent)
(cm:time ,form :return-statistics-only-p t)

(print-cm-timing ',(if (listp form) (first form) form)
,elapsed-time
,cm-time
,percent))))

PRINT-CM-TIMING prints the FE ELAPSED-TIME, CM-TIME and CM usage PERCENT
statistics for the given OPERATION.

(defun print-cm-timing (operation elapsed-time cm-time percent)
(format t "'-%a: -7,3f secs elapsed time, -7,3f secs CM time (C4,lf%)"

operation elapsed-time cm-time percent))

Mapping Net Timings

TIME-MAPPING-NET compiles timing statistics for the CONTINUOUS-MAPPING test net
up to MAX-N. INCREMENT controls granularity of the increment in net size.

(defun time-mapping-net (max-n tkey (increment M))
(cmi::calibrate-cm-timer)
(let (mapping-net

mapping-set)
(do ((n 1 (+ increment n)))

((> n max-n))
(setf mapping-net

(fe-make-net 'mapping-net
:continuous-mapping
(list (* 4 n) (* 2 n) n 1)
0

2

'((1 0 100)

(2 0 100)
(2 1 100)
(I 3 100)
(2 3 100)

(3 3 100)
)

(format t "-3%*** N = -a ***" n)
(format t "-%Mapping net: -a units, -a connections -> a processors"

(net-no-units mapping-net)
(net-no-connections mapping-net)
(net-no-processors mapping-net))

(cm-net-cold-boot mapping-net)
(format t "%VP ratio = -a" cm:*virtual-to-physical-processor-ratio*)
(cm-time-and-print

(cm-make-net mapping-net))
(setf mapping-set

(cm-load-mapping-set 'mapping-set
(list

(list (make-array (* 4 n) :initial-element 1.0)
(make-array n :initial-element 1.0)))))

(cm-time-and-print
(feed-forward mapping-net (examplar-input-pvar (get-examplar mapping-set O))))

(cm-time-and-print
(back-propagate mapping-net (examplar-target-pvar (get-examplar mapping-set 0))))

(if (and (= n 1) (/= increment 1)) (decf n))

TIME-MEMORY-NET compiles timing statistics for the ASSOCIATIVE-MEMORY test net
up to MAX-N. INCREMENT controls granularity of the increment in net size.

62

NRL REPORT 9167

(defun time-memory-net (max-n tkey (increment 1))
(cmi::calibrate-cm-timer)
(let (memory-net

memory-set)
(do (Cn 1 (+ increment n)))

((> n max-n))
(setf memory-net

(fe-make-net 'memory-net
:associative-memory
(list (* 8 n) n)

0
0
'CC1 0 25)
(o 1 25)
)

(format t "-3%*** N =a ***" n)
(format t "-'.Memory net: -a units, -a connections -> -a processors"

(net-no-units memory-net)
(net-no-connections memory-net)
(net-no-processors memory-net))

(cm-net-cold-boot memory-net)
(format t "%VP ratio = -a" cm:*virtual-to-physical-processor-ratio*)
(cm-time-and-print

(cm-make-net memory-net))
(setf memory-set

(cm-load-memory-set 'memory-set
(list (make-array (* 8 n) :initial-element 1.0))))

(cm-time-and-print
(feed-forward memory-net (examplar-input-pvar (get-examplar memory-set 0))))

(cm-time-and-print
(back-propagate memory-net (examplar-input-pvar (get-examplar memory-set 0))))

(if (and (= n 1) (/= increment 1)) (decf n))

EOF

#+:ccl
(format t "-%\"Time Nets\" loaded")

63

Appendix D
*LISP CODE FOR TOMBOULIAN IMPLEMENTATION

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -a-

(in-package '*lisp)

Etienne Deprit
Naval Research Lab, Code 8242

;;; Tomboulian Implementation

Pvar Types

MAX-INT-PVAR
CUBE-ADDRESS-PVAR
SLAB-NO-PVAR
UNIT-NO-PVAR
BUNDLE-NO-PVAR
CONNECTION-NO-PVAR

unsigned byte
unsigned byte
unsigned byte
unsigned byte
unsigned byte
unsigned byte

[O , 216-1J
[O , *log-number-of-processors-limit*]
[O , 2-16-1]
[O , 2-16-1]
[O , 2-16-1]
[O , 2-32-1]

; Pvar type field sizes

(defvar *cm-max-int*)
(defvar *slab-no-size*)
(defvar *unit-no-size*)
(defvar *bundle-no-size*)
(defvar *connection-no-size*)

(defvar *cm-single-float-size* 32)

Set field sizes in compiler's environment

(eval-when (compile load eval)
(setf *cm-max-int* (expt 2 16))
(setf *slab-no-size* 16)
(setf *unit-no-size* 16)
(setf *bundle-no-size* 16)
(setf *connection-no-size* 32)

; IEEE single-float size, WEITIEK chips

, Define pvar types

(deftype max-int-pvar C) '(pvar (unsigned-byte
3.(1+ (ceiling (log *cm-max-int* 2))))))

(deftype cube-address-pvar C) '(pvar (unsigned-byte
log-number-of-processors-limit)))

(deftype slab-no-pvar C) '(pvar (unsigned-byte #.*slab-no-sizea)))

(deftype unit-no-pvar C) '(pvar (unsigned-byte 3.*unit-no-size*)))

65

E. M. DEPRIT

(deftype bundle-no-pvar () '(pvar (unsigned-byte #.*bundle-no-size*)))

(deftype connection-no-pvar () '(pvar (unsigned-byte #.*connection-no-size*)))

;When using simulator, add new pvar type symbols

#+:*lisp-simulator
(progn

(pushnew 'max-int-pvar **lisp-exported-type-symbols*)
(pushnew 'cube-address-pvar **lisp-exported-type-symbols*)
(pushnew 'slab-no-pvar **lisp-exported-type-symbols*)
(pushnew 'unit-no-pvar **lisp-exported-type-symbols*)
kpushnew 'bundle-no-pvar **lisp-exported-type-symbols*)
pushnew 'connection-no-pvar **lisp-exported-type-symbols*)

EOF

#+:ccl
(format t "/A\"Pvar Types\" loaded")

-*- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -*-

(in-package '*lisp)

Etienne Deprit
Naval Research Lab, Code 8242

Tomboulian Implementation

Utilities

COUNT-CSS returns the number of processors in the currently selected set.

(defun count-css (
(*sum (!! 1)))

MAX-INT!! returns a field pvar containing *CM-MAX-INT*.

(defmacro max-int! 0
'(the max-int-pvar (!! *cm-max-int*)))

RANDOM-FLOAT!! returns a random float pvar evenly distributed in the interval
[mean-interval , mean+interval] in each processor.

#-:*lisp-simulator
(*proclaim '(ftype -(function (t) (pvar single-float)) random-float!!))

(*defun random-float!! (mean!! interval!!)
(declare (type float-pvar mean!! interval!!))
(*let (temp!!)
(declare (type float-pvar temp!!))
(*set temp!!

(+!! mean!!

(*!! interval!!

(if!! (=!! (random!! (!! 2)) (!! 1))

(!! 1.0)
(!! -1.0))

66

NRL REPORT 9167

(/!! (random!! (max-int!!))
(max-int!!)))))

temp!!))

FORMAT-PVARS pretty prints the given list of PVARS. Additional keyword arguments
will be passed in to PRETTY-PRINT-PVAR.

(defmacro format-pvars (pvars trest keys tkey tallow-other-keys)
'(progn

,@(mapcan 3'(lambda (pvar)
'((format t "-%-a" (pvar-name ,pvar)) (ppp ,pvar ,Ckeys)))

pvars)))

ENUMERATE i*turns the list (O,1,..1).

(defun enumerate Cm)
(let (l)

(dotimes (i n)
(push i 1))

(nreverse 1)))

MULTIPLE-VALUE-SETF sets the locations referenced by ACCESSOR-FORMS
to the multiple values returned by VALUES-FORM.

(defmacro multiple-value-setf (accesor-forms values-form)
(let ((values-list (gensym))

(i -1))
'(let ((,values-list (multiple-value-list ,values-form)))

(setf ,Q(mapcan *'(lambda (accessor-form)
'(,accessor-form (nth ,(incf i) ,values-list)))

accesor-forms)))))

PRINT-VEC prints the array VEC on STREAM with the given ELEMENTS-PER-LINE.
Each element is printed using ELEMENT-FORMAT, and each line of output is
preceeded by NEW-LINE-FORMAT.

(defun print-vec (vec toptional (stream t)
tkey elements-per-line (element-format "s ") (new-line-format "IC"))

(dotimes (i (length vec))
(if (and elements-per-line

(zerop (mod i elements-per-line)))
(format stream "-Q?" new-line-format))

(format stream "(Q?" element-format (aref vec i)))
(values))

PRINT-IO-VECS prints the INPUT and OUTPUT vectors.

(defun print-io-vecs (input output)
(format t "-%i: ") (print-vec input)
(format t " o: ") (print-vec output))

LIST-TO-ARRAY-PAIRS coerces the list of LIST-PAIRS into a list of array pairs.

(defun list-to-array-pairs (list-pairs)
(let (input target)

(map 'list
#'(lambda (pair)

(setf input (first pair)
target (second pair))

(list
(make-array (length input) :initial-contents input)
(make-array (length target) :initial-contents target)))

list-pairs)))

LIST-TO-ARRAY coerces the list of lists into a list of arrays.

(defun list-to-array (list)
(map 'list

3'(lambda (sub-list)

67

E. M. DEPRIT

(make-array (length sub-list) :initial-contents sub-list))
list))

;;; EOF

#+: ccl
(format t "-%\"Utilties\" loaded")

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -*-

(in-package '*lisp)

Etienne Deprit
Naval Research Lab, Code 8242

Tomboulian Implementation

N-Dimensional Grid

Grid parameters

(defvar *max-hops*) ; max hops in grid

(defvar *max-hops-size*) ; max hops field size

(defvar *grid-dim-size*) ; grid dimension field size

(defvar *grid-center*) ; addr of grid center

(defvar *max-hops-to-center*) ; max hops to grid center

Define grid pvar types

GRID-DIMENSION-PVAR [O,max dimension)
GRID-OFFSET-PVAR -1,0,+1
GRID-DISTANNCE-PVAR [O,max hops]

(deftype grid-dimension-pvar) '(pvar (unsigned-byte *grid-dim-size*)))

(deftype grid-offset-pvar C) '(pvar (signed-byte 2)))

(deftype grid-distance-pvar C) '(pvar (unsigned-byte *max-hops-size*)))

When using simulator, add new pvar type symbols

#+:*lisp-simulator
(progn

(pushnew 'grid-dimension-pvar **lisp-exported-type-symbols*)
(pushnew 'grid-offset-pvar **lisp-exported-type-symbols*)
(pushnew 'grid-distance-pvar **lisp-exported-type-symbols*)

M MAX-HOPS returns the maximum number of hops for the given GRID-DIMENSIONS.

(defun max-hops (grid-dimensions)
(- (reduce #'+ grid-dimensions)

(length grid-dimensions)))

; GRID-CENTER returns the center of GRID-DIMENSIONS.

68

NRL REPORT 9167

(defun grid-center (grid-dimensions)
(mapcar #'(lambda (n)

(truncate n 2))
grid-dimensions))

DIMENSION-NO!! returns a grid-dimension-pvar containing DIM number.

(defmacro dimension-no!! (dim)
'(the grid-dimension-pvar C!! ,dim)))

GRID-CENTER!! returns a grid-distance-pvar containing the grid center along DIM.

(defmacro grid-center!! (dim)
'(the grid-distance-pvar C!! (nth ,dim *grid-center*))))

INIT-N-DIMENSIONAL-GRID initializes the n-dimensional-grid parameters.

(defun init-n-dimensional-grid C)
(setf *max-hops* (max-hops *current-cm-configuration*)

max-hops-size (ceiling (log *max-hops* 2))
grid-dim-size (ceiling (log (apply 3'max *current-cm-configuration*) 2))
grid-center (grid-center *current-cm-configuration*)
max-hops-to-center (reduce #'+ *grid-center*)
ppp-default-mode :grid))

Reset N-dimensional-grid parameters after *COLD-BOOT.

#+:*lisp-hardware
(add-initialization "Init N Dimensional Grid"

C(init-N-dimensional-grid)
'*after-*cold-boot-initializations*)

#+:*lisp-simulator
(add-initialization :name-of-form "Init N Dimensional Grid"

:form '(init-N-dimensional-grid)
:variable '*after-*cold-boot-initializations*)

*COLD-BOOT CM to current grid dimensions.

(*cold-boot)

;;; EOF

#+:ccl
(format t "%V\"N Dimensional Grid\" loaded")

-a- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -a-

(in-package '*lisp)

Etienne Deprit
Naval Research Lab, Code 8242

Tomboulian Implementation

Processor Allocation

69

E. M. DEPRIT

; CM Dimensions

; *CM-DIMENSIONS* is a list of CM configurations. Each configuration is a list
; of the total number of processors and the corresponding CM dimensions.

(defvar *cm-dimensions*
(mapcar #'(lambda (dims)

(list (reduce #'* dims) dims))
3+:*lisp-hardware
'CC 64 i28)

C 128 128)
C 128 256)
C 256 256)
C 256 512)
C 512 512)
C 512 1024)
(1024 1024))

*+:*lisp-simulator
'((4 4)

(6 4)
(6 6)
(8 6)
(8 8))

CM-BEST-FIT-DIMS returns the minimum CM dimensions necessary
to satisfy the request for NO-PROCESSORS.

(defun cm-best-fit-dims (no-processors)
(second (assoc no-processors

cm-dimensions
:test X'<)))

Processor Allocator

(*proclaim '(type boolean-pvar freep!!))

(*defvar freep!! t!!)

(defvar distance-from-grid-center!!)

; is processor free?

; processor distance from grid center,
; allocated during *COLD-BOOT

DISTANCE-FROM-GRID-CENTER returns a grid-distance-pvar containing
each processor's distance from the grid center.

#-:*lisp-simulator
(*proclaim '(ftype (function (t) grid-distance-pvar) distance-from-grid-center!!))

(*defun distance-from-grid-center!! C)
(*let ((distance!! C!! O)))

(declare (type grid-distance-pvar distance!!))
(dotimes (n *number-of-dimensions*)

(*set distance!!
distance!!
(abs!! (-!! (self-address-grid!! (the grid-dimension-pvar C!! n)))

(grid-center!! n))))))
distance!!))

INIT-PROCESSOR-ALLOCATION initialiazes the processor allocator.

(defun init-processor-allocation C)
(setf distance-from-grid-center!!

(allocate!! (distance-from-grid-center!!)
'distance-from-grid-center!!
'grid-distance-pvar))

70

NRL REPORT 9167

Reset the processor allocator after *COLD-BOOT.

#+:*lisp-hardware
(add-initialization "Init Processor Allocation"

'(init-processor-allocation)
'*after-*cold-boot-initializations*)

#+:*lisp-simuilator
(add-initialization :name-of-form "Init Processor Allocation"

:form '(init-processor-allocation)
:variable '*after-*cold-boot-initializations*)

Processor Allocation Modes

cube address
random
grid address
distance from grid center
weighted distance from grid center

PALLOC-BY-CUBE-ADDR!! returns a cube address ordering of the free processors.

#-:*lisp-simulator
(*proclaim '(ftype (function Ct) cube-address-pvar) palloc-by-cube-addr!!))

(*defun palloc-by-cube-addr!!)
(enumerate!!))

PALLOC-RANDOM!! returns a random ordering of the free processors.

#-:*lisp-simulator
(*proclaim '(ftype (function Ct) cube-address-pvar) palloc-random!!))

(*defun palloc-random!! C)
(rank!! (random!! (max-int!!))

'<=!!))

PALLOC-BY-GRID-ADDR!! returns a grid address ordering of the free processors.

#-:*lisp-simulator
(*proclaim '(ftype (function Ct) cube-address-pvar) palloc-by-grid-addr!!))

(*defun palloc-by-grid-addr!! C)
(*let ((addr!! (self-address-grid!! (dimension-no!! (1- *number-of-dimensions*)))))

(declare (type cube-address-pvar addr!!))
(do ((dim-no (- *number-of-dimensions* 2) (1- dim-no))

(dim-sizes (rest (reverse *current-cm-configuration*))
(rest dim-sizes)))

((minusp dim-no))
(*set addr!!

(+!! (*!! addr!!
(the cube-address-pvar

C!! (expt 2 (ceiling (log (first dim-sizes) 2))))))
(self-address-grid!! (dimension-no!! dim-no)))))

(rank!! addr!!
'<=!!)))

PALLOC-FROM-GRID-CENTER!! returns an ordering of the free processors
by increasing distance from the grid center.

#-:*lisp-simulator
(*proclaim '(ftype (function Ct) cube-address-pvar) palloc-from-grid-center!!))

(*defun palloc-from-grid-center!! C)
(rank!! distance-from-grid-center!! '<=!!))

71

E. M. DEPRIT

PALLOC-FROM-GRID-CENTER-WEIGBTED!! returns a random ordering of the free processors
weighted by increasing distance from the grid center.

3-:*lisp-simulator
(*proclaim '(ftype (function Ct) cube-address-pvar) palloc-from-grid-center-weighted!!))

(*defun palloc-from-grid-center-weighted!! C)
(rank!! (*!! distance-from-grid-center!!

(random!!
C!! (truncate *cm-max-int*

max-hops-to-center))))
'<=!!))

Legal allocation modes and associated ordering functions

(defvar *palloc-legal-allocation-modes*
'((:cube-addr . palloc-by-cube-addr!!)

(:random . palloc-random!!)
(:grid-addr . palloc-by-grid-addr!!)
(:grid-center .palloc-from-grid-center!!)
(:grid-center-weighted . palloc-from-grid-center-weighted!!)))

Processor Allocator

OUT-OF-PROC-P signals an error if there are fewer than N free processors.

(defun out-of-proc-p (n)
(if (< (*when freep!! (count-css)) n)

(error "PALLOC!! can't allocate -a processora:*j[s-;-:;stl>" n)))

GET-ALLOCATION-FUNCTION returns the ordering function for ALLOCATION-MODE.
If ALLOCATION-MODE is illegal, GET-ALLOCATION-FUNCTION asserts an error.

(defun get-allocation-function (allocation-mode)
(assert (assoc allocation-mode *palloc-legal-allocation-modes*)

(allocation-mode)
"Unknown allocation mode -s" allocation-mode)

(rest (assoc allocation-mode *palloc-legal-allocation-modes*)))

FOR-FIRST-N-PROC executes BODY with the currently selected set
composed of the first N processors by cube address.

(defmacro for-first-n-proc ((n) &body body)
'(*when (<!! (self-address!!) (the cube-address-pvar !! n)))

,Nbody))

In Allegro CL, set FRED indentation for macro

#+:ccl
(pushnew '(for-first-n-proc . 1)

ccl::*fred-special-indent-alist*
:test 3'equal)

PALLOC!! returns a cube-address-pvar containing the cube addresses of N
free processors allocated according to ALLOCATION-MODE.

#-:*lisp-simulator
(*proclaim '(ftype (function Ct) cube-address-pvar) palloc!!))

(*defun palloc!! (n &optional (allocation-mode :cube-addr))
(let ((allocation-function

(get-allocation-function allocation-mode)))
(*all

(unless (out-of-proc-p n)
(*let (rendezvous!!)
(declare (type cube-address-pvar rendezvous!!))
(*if freep!!

72

NRL REPORT 9167

(*pset :no-collisions
(self-address!!)
rendezvous!!
(*funcall allocation-function)))

(for-first-n-proc (n)
(*pset :no-collisions

nil!!
freep!!
rendezvous!!)

(sort!! rendezvous!! '<=!!)))))))

PALLOC returns an array containing the cube addresses of N free processors
allocated according to ALLOCATION-MODE.

(defun palloc (n &optional (allocation-mode :cube-addr))
(pvar-to-array (palloc!! n allocation-mode)

(make-array n)
:cube-address-end n))

PALLOC-ONE returns the cube address of the next free processor
allocated according to ALLOCATION-MODE.

(defmacro palloc-one (toptional (allocation-mode :cube-addr))
'(aref (palloc 1 ,allocation-mode) 0))

WITH-N-PROC-ALLOCATED allocates N free processors according to ALLOCATION-MODE and
sets ADDR to an array containing the cube addresses of the allocated processors.
WITH-N-PROC-ALLOCATED then executes BODY with the currently selected set
composed of the newly allocated processors.

(defmacro with-n-proc-allocated C(n addr
&optional (allocation-mode :cube-addr))

&body body)
(let ((p-addr!! (gensym))

(new-proc-p!! (gensym)))
'(let (,addr)

(*all
(*let ((,p-addr!! (palloc!! ,n ,allocation-mode))

(,new-proc-p!! nil!!))
(declare (type cube-address-pvar ,p-addr!!)

(type boolean-pvar ,new-proc-p!!))
(setf ,addr (pvar-to-array ,p-addr!!

(make-array ,n)
:cube-address-end ,n))

(*if (<!! (self-address!!) (the cube-address-pvar C!! ,n)))
(*pset :no-collisions

t!!
,new-proc-p!!
,p-addr!!))

(*when ,new-proc-p!!
,Nbody))))))

In Allegro CL, set FRED indentation for macro

#+:ccl
(pushnew '(with-n-proc-allocated . i)

ccl::*fred-special-indent-alist*
:test #'equal)

;;; EOF

#+:ccl
(format t "%\"Processor Allocation\" loaded")

73

E. M. DEPRIT

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -a-

(in-package '*lisp)

Etienne Deprit
Naval Research Lab, Code 8242

Tomboulian Implementation

Neighbor Addressing

Neighbor Addressing parameters

(defvar *self-loops-p* t) ; allow self-neighbors?

(defvar *neighbor-limit*) ; max number of neighbors

(defvar *neighbor-no-size*) ; max neighbors field size

Define neighbor addressing pvar type

NEIGHBOR-NO-PVAR [O,max neighbors)

(eval-when (compile load eval)
(deftype neighbor-no-pvar C) '(pvar (unsigned-byte *neighbor-no-size*)))
(deftype neighbor-no C) '(unsigned-byte *neighbor-no-size*))

When using simulator, add new pvar type symbols

#+:*lisp-simulator
(pushnew 'neighbor-no-pvar **lisp-exported-type-symbols*)

NEIGHBOR-LIMIT!! returns a neighbor-no-pvar containing neighbor limit.

(defmacro neighbor-limit!! C)
'(the neighbor-no-pvar C!! *neighbor-limit*)))

NO-NEIGHBORS returns the neighbor limit for a grid with NO-DIMENSIONS.
If SELF-LOOPS-P is T, then self-neighbors are allowed.

(defun no-neighbors (no-dimensions self-loops-p)
(+ (* 2 no-dimensions)

(if self-loops-p 1 O)))

SELF-NEIGHBOR-P returns T if NEIGHBOR-NO represents the self-neighbor.

(defun self-neighbor-p (neighbor-no)
(and *self-loops-p*

(= neighbor-no (i- *neighbor-limit*))))

INIT-NEIGBBOR-ADDRESSING initialiazes the neighbor addressing parameters.

(defun init-neighbor-addressing C)
(setf *neighbor-limit*

(no-neighbors *number-of-dimensions* *self-loops-p*)
neighbor-no-size (ceiling (log *neighbor-limit* 2))))

74

NRL REPORT 9167

Reset neighbor addressing parameters after *COLD-BOOT.

#+:*lisp-hardware
(add-initialization "Init Neighbor Addressing"

'(init-neighbor-addressing)
'*after-*cold-boot-initializations*)

#+:*lisp-simulator
(add-initialization :name-of-form "Init Neighbor Addressing"

:form '(init-neighbor-addressing)
:variable '*after-*cold-boot-initializations*)

*COLD-BOOT CM to current grid dimensions.

(*cold-boot)

Neighbor Addressing Utilities

NEIGHBOR-NO-INVERSE returns the inverse link for NEIGHBOR-NO.

(defun neighbor-no-inverse (neighbor-no)
(if (and *self-loops-p* (= neighbor-no (1- *neighbor-limit*)))

neighbor-no
(if (evenp neighbor-no)

(1+ neighbor-no)

(1- neighbor-no))))

Parallel NEIGHBOR-NO-INVERSE

#+:*lisp-hardware
(*proclaim '(ftype (function (t) neighbor-no-pvar) neighbor-no-inverse!!))

(*defun neighbor-no-inverse!! (neighbor-no!!)
(declare (type neighbor-no-pvar neighbor-no!!))
(*let (inverse!!)
(declare (type neighbor-no-pvar inverse!!))
(*set inverse!!

(if!! (=!! neighbor-no!! (1-!! (neighbor-limit!!)))

neighbor-no!!
(if!! (evenp!! neighbor-no!!)

(1+!! neighbor-no!!)
(C-!! neighbor-no!!))))

inverse!!))

GRID-OFFSET-FROM-NEIGHBOR-NO returns the grid-offset for NEIGHBOR-NO along DIMENSION.

(defun grid-offset-from-neighbor-no (neighbor-no dimension)
(if (/= (truncate neighbor-no 2) dimension)

0

(if (evenp neighbor-no) -1 +M)))

GRID-OFFSETS-FROM-NEIGHBOR-NO returns the grid-offsets for NEIGHBOR-NO.

(defun grid-offsets-from-neighbor-no (neighbor-no)
(mapcar 3'(lambda (dim)

(grid-offset-from-neighbor-no neighbor-no dim))
(enumerate *number-of-dimensions*)))

Parallel GRID-OFFSET-FROM-NEIGHBOR-NO

#+:*lisp-hardware
(*proclaim '(ftype (function Ct) grid-offset-pvar) grid-offset-from-neighbor-no!!))

(*defun grid-offset-from-neighbor-no!! (neighbor-no!! dimension!!)
(declare (type neighbor-no-pvar neighbor-no!!)

75

E. M. DEPRIT

(type grid-dimension-pvar dimension!!))
(cond!! ((/=!! (truncate!! neighbor-no!! C!! 2)) dimension!!) dimension!!)

((evenp!! neighbor-no!!) C!! -1))
(t!! (!! +M)))

CUBE-FROM-NEIGHBOR-NO returns the cube address of the processor connected
by the NEIGHBOR-NO link to the processor at CUBE-ADDR.

(defmacro cube-from-neighbor-no (cube-addr neighbor-no)
'(cube-from-grid-address

,@(mapcar X'(lambda (d)
'(+ (grid-from-cube-address ,cube-addr ,d)

(grid-offset-from-neighbor-no ,neighbor-no ,d)))
(enumerate *number-of-dimensions*))))

OFF-GRID-NEIGBBOR-P!! returns a boolean-pvar indicating if each processor
has a NEIGHBOR-NO link.

(defmacro off-grid-neighbor-p!! (neighbor-no)
(let ((off-p!! (gensym)))

'(the boolean-pvar
(*let ((,off-p!! nil!!))

(declare (type boolean-pvar ,off-p!!))
(cond

,@(mapcar *'(lambda (n)
'((= ,neighbor-no ,n)
(*set ,off-p!!

(off-grid-border-relative-p!!
,Q(mapcar *'(lambda (offset)

'(!! ,offset))
(grid-offsets-from-neighbor-no n))))))

(enumerate *neighbor-limit*)))
,off-p!!))

Neighbor Addressing Read Operations

PREF-1-NEIGHBOR!! reads SOURCE-PVAR into DEST-PVAR from the direction NEIGHBOR-NO.

(defmacro pref-1-neighbor!! (dest-pvar source-pvar neighbor-no)
'(case ,neighbor-no

,@(mapcar
#'(lambda (n)

'(,n

(*set ,dest-pvar
,Cif (self-neighbor-p n)

source-pvar
'(news!!

,source-pvar
,@(mapcar *'(lambda Cd)

(grid-offset-from-neighbor-no n d))
(enumerate *number-of-dimensions*))

(enumerate *neighbor-limit*)))
)

PREF-NEIGBBOR!! reads SOURCE-PVAR into DEST-PVAR from the directions in NEIGHBOR-NO-PVAR.

(defmacro pref-neighbor!! (dest-pvar source-pvar neighbor-no-pvar)
(let* ((temp-neighbor (if (listp neighbor-no-pvar)

(gensym)
neighbor-no-pvar))

*cond-exp)
(setf *cond-exp

76

NRL REPORT 9167

'(*cond
,Q(mapcar

3'(lambda (n)
'((=!! ,temp-neighbor C!! ,n))

(*set
,dest-pvar
,(if

(self-neighbor-p n)
source-pvar
'(news!! ,source-pvar

,Q(mapcar #'(lambda (d)
(grid-offset-from-neighbor-no n d))

(enumerate *number-of-dimensions*)))

(enumerate *neighbor-limit*))))
(if (listp neighbor-no-pvar)

(append
'(*let ((,temp-neighbor ,neighbor-no-pvar))

(declare (type neighbor-no-pvar ,temp-neighbor)))
(list *cond-exp))

*cond-exp)))

Neighbor Addressing Write Operations

*PSET-1-NEIGHBOR writes SOURCE-PVAR into DEST-PVAR according to the direction NEIGHBOR-NO.

(defmacro *pset-1-neighbor (source-pvar dest-pvar neighbor-no)
'(case ,neighbor-no

,N(mapcar
3'(lambda (n)

'(,n
,(if (self-neighbor-p n)

'(*set ,dest-pvar ,source-pvar)
'(*pset :no-collisions

,source-pvar
dest-pvar

(cube-from-grid-address!!
,Q(mapcar

X'(lambda (d)
'C+!! (self-address-grid!! C!! ,d))

C!! ,(grid-offset-from-neighbor-no n d))))
(enumerate *number-of-dimensions*))))

(enumerate *neighbor-limit*))

*PSET-NEIGHBOR writes SOURCE-PVAR into DEST-PVAR using COMBINER according
to the directions in NEIGHBOR-NO-PVAR.

(defmacro *pset-neighbor (combiner source-pvar dest-pvar neighbor-no-pvar)
(let* ((temp-neighbor (if Clistp neighbor-no-pvar)

(gensym)
neighbor-no-pvar))

*pset-exp)
(setf *pset-exp

'(*pset
,combiner
,source-pvar
,dest-pvar
(cube-from-grid-address!!

,Q(mapcar
X'(lambda (d)

'C+!! (self-address-grid!! C!! ,d))
(grid-offset-from-neighbor-no!! ,temp-neighbor C!! ,d))))

(enumerate *number-of-dimensions*)))

(if (listp neighbor-no-pvar)

77

E. M. DEPRIT

(append
'(*let ((,temp-neighbor ,neighbor-no-pvar))

(declare (the neighbor-no-pvar ,temp-neighbor)))
(list *pset-exp))

*pset-exp)

EOF

#+:ccl
(format t -%\"Neighbor Addressing\" loaded")

L _.

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -*-

(in-package '*lisp)

Etienne Deprit
Naval Research Lab, Code 8242

Tomboulian Implementation

Graph Structures

; Graph Structure parameters

(defvar *time-quantum*)

(defvar *free*)

(defvar *max-path-length*)

(defvar *path-len-size*)

; time quantum for routing

; free slot flag

; max path length in graph

; max path length field size

Define graph structures pvar type

PATH-LENGTH-PVAR [O,max path length)

(eval-when (compile load eval)
(deftype path-length-pvar () '(pvar (unsigned-byte *path-len-size*)))

When using simulator, add new pvar type symbols

#+:*lisp-simulator
(pushnew 'path-length-pvar **lisp-exported-type-symbols*)

(defvar has-neighbor-p[]!!)

(defvar slots[]!

(defvar trial-slots[]!!)

(*proclaim '(type boolean-pvar activep!!))
(*proclaim '(type boolean-pvar next-activep!!))
(*proclaim '(type boolean-pvar destinationp!!))

; array of pvars indicating neighbor links

; array of slot structures

; array of trial-slot structures

78

NRL REPORT 9167

(*proclaim '(type boolean-pvar reachedp!!))

(*defvar activep!!) ; boolean-pvar indicating active processors

MAKE-HAS-NEIGHBOR-P returns an array of pvars indicating the existence
of neighbor links in each neighbor direction.

(defun make-has-neighbor-p C)
(let ((has-neighbor-p (make-array *neighbor-limit*)))
(*all
(dotimes (n *neighbor-limit*)
(setf (aref has-neighbor-p n)

(allocate!! nil!!
(format nil "has-neighbor--a-p" n)
'boolean-pvar))

(*set (the boolean-pvar (aref has-neighbor-p n))
(not!! (off-grid-neighbor-p!! n)))

has-neighbor-p))

HAS-NEIGHBOR-N-P!! returns the boolean-pvar indicating the existence of link NEIGHBOR-NO.

(defmacro has-neighbor-n-p!! (neighbor-no)
'(the boolean-pvar (aref has-neighbor-p[]!! ,neighbor-no)))

Routing Slots

Arc label stubs

(defstruct arc-label

(defun *copy-arc-label (label!! addr label)
(declare (ignore label!! addr))
label)

Routing slot

(defstruct (slot
(:conc-name slot-i-)
(:constructor make-slot-internal))

startp!! ; beginning of arc?
forward!! ; forward link, neighbor-no for read
backward!! ; backward link, neighbor-no for read
endp!! ; end of arc?
arc-label!! ; label if beginning of arc

Accessors for slot structure

(defmacro slot-startp!! (slot)
'(the boolean-pvar (slot-i-startp!! ,slot)))

(defmacro slot-forward!! (slot)
'(the neighbor-no-pvar (slot-i-forward!! ,slot)))

(defmacro slot-backward!! (slot)
'(the neighbor-no-pvar (slot-i-backward!! ,slot)))

(defmacro slot-endp!! (slot)
'(the boolean-pvar (slot-i-endp!! ,slot)))

(defmacro slot-arc-label!! (slot)

79

E. M. DEPRIT

'(slot-i-arc-label!! ,slot))

RESET-SLOT resets the SLOT structure.

(defmacro reset-slot (slot)
'(progn (*set (slot-startp!! ,slot) nil!!

(slot-forward!! ,slot) (neighbor-limit!!)
(slot-backward!! ,slot) (neighbor-limit!!)
(slot-endp!! ,slot) nil!!)

,slot))

MAKE-SLOT returns a new slot structure for TIME step.

(defun make-slot (time)
(let ((slot

(make-slot-internal
:startp!!
(allocate!! nil (format nil "startp--a" time) 'boolean-pvar)
:forward!!
(allocate!! nil (format nil "forward--a" time) 'neighbor-no-pvar)
:backward!!
(allocate!! nil (format nil "backward--a" time) 'neighbor-no-pvar)
:endp!!
(allocate!! nil (format nil "endp-a" time) 'boolean-pvar)
:arc-label!!
(funcall 'make-arc-label)

(reset-slot slot)))

RESET-SLOTS resets the array of SLOTS.

(defun reset-slots (slots)
(*all

(dotimes (time (length slots))
(reset-slot (aref slots time))))

slots)

MAKE-SLOTS returns an array of slots of size TIME-QUANTUM.

(defun make-slots (time-quantum)
(let ((slots (make-array time-quantum :adjustable t)))

(dotimes (time time-quantum)
(setf (aref slots time) (make-slot time)))

slots))

Trial-Slots for path construction

Trial-slot structure

(defstruct (trial-slot
(:conc-name trial-slot-i-)
(:constructor make-trial-slot-internal))

direction!! ; neighbor-no direction of trial-path
length!! ; length of trial-path

Accessors for trial-slot structure

(defmacro trial-slot-direction!! (trial-slot)
'(the neighbor-no-pvar (trial-slot-i-direction!! ,trial-slot)))

(defmacro trial-slot-length!! (trial-slot)
'(the path-length-pvar (trial-slot-i-length!! ,trial-slot)))

RESET-TRIAL-SLOT resets the TRIAL-SLOT structure.

80

NRL REPORT 9167

(defmacro reset-trial-slot (trial-slot)
'(progn (*set (trial-slot-direction!! ,trial-slot) (neighbor-limit!!)

(trial-slot-length!! ,trial-slot) (the path-length-pvar C!! O)))
,trial-slot))

MAKE-TRIAL-SLOT returns a new trial-slot structure for TIME step.

(defun make-trial-slot (time)
(let ((trial-slot

(make-trial-slot -internal
:direction!!
(allocate!! nil (format nil "direction--a" time) 'neighbor-no-pvar)
:length!!
(allocate!! nil (format nil "length--a" time) 'path-length-pvar))))

(reset-trial-slot trial-slot)))

*DEALLOCATE-TRIAL-SLOT deallocates the pvars in the TRIAL-SLOT structure.

(defmacro *deallocate-trial-slot (trial-slot)
'(progn (*deallocate (trial-slot-direction!! ,trial-slot))

(*deallocate (trial-slot-length!! ,trial-slot))))

RESET-TRIAL-SLOTS resets the array of TRIAL-SLOT structures.

(defun reset-trial-slots (trial-slots)
(*all

(dotimes (time (length trial-slots))
(reset-trial-slot (aref trial-slots time))))

trial-slots)

MAKE-TRIAL-SLOTS returns an array of trial-slots of size TIME-QUANTUM.

(defun make-trial-slots (time-quantum)
(let ((trial-slots (make-array time-quantum :adjustable t)))

(dotimes (time time-quantum)
(setf (aref trial-slots time) (make-trial-slot time)))

trial-slots))

INC-TIME-QUANTUM grows the SLOTS and TRIAL-SLOTS arrays by DELTA time steps.

(defun inc-time-quantum (Coptional (delta 1))
(adjust-array slots[]!! (+ *time-quantum* delta))
(adjust-array trial-slots[]!! (+ *time-quantum* delta))
(dotimes (i delta)

(setf (aref slots[]!! (+ *time-quantum* i))
(reset-slot (make-slot (+ *time-quantum* i)))
(aref trial-slots[]!! (+ *time-quantum* i))
(reset-trial-slot (make-trial-slot (+ *time-quantum* i)))))

(incf *time-quantum* delta))

INIT-GRAPB-STRUCTURES initialiazes the graph structures.

(defun init-graph-structures C)
(setf *time-quantum* 1

free *neighbor-limit*
max-path-length (* 2 *max-hops*)
path-len-size (ceiling (log *max-path-length* 2))
has-neighbor-p[]!! (make-has-neighbor-p)
slots[]!! (make-slots *time-quantum*)
trial-slots[]!! (make-trial-slots *time-quantum*)))

Reset graph structures after *COLD-BOOT.

#+:*lisp-hardware
(add-initialization "Init Graph Routing Strucs"

'(init-graph-structures)

81

E. M. DEPRIT

'*after-*cold-boot-initializations*)

#+:*lisp-simulator
(add-initialization :name-of-form "Init Graph Routing Strucs"

:form '(init-graph-structures)
:variable '*after-*cold-boot-initializations*)

EOF

#+:ccl
(format t "-,\"Graph Structures\" loaded")

F-

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -a-

(in-package '*lisp)

Etienne Deprit
Naval Research Lab, Code 8242

Tonboulian Implementation

Graph Hooks

Arc label slot specification

(defstruct (slot-spec (:type list)) ; slots fed to ALLOCATE!!
label ; slot label
initial-value ; initial value
name ; slot name
type) ; pvar type

Arc label slot accessors

(defun slot-label (slot)
(if (listp slot)

(slot-spec-label slot)
slot))

(defun slot-initial-value (slot)
(if (listp slot)

(slot-spec-initial-value slot)))

(defun slot-name (slot)
(if (listp slot)

(slot-spec-name slot)))

(defun slot-type (slot)
(if (listp slot) -

(slot-spec-type slot)))

STRINGS-TO-SYMBOL returns the symbol formed by the concatenation of STRINGS.

(defmacro strings-to-symbol (crest strings)
'(read-from-string (funcall 3'concatenate 'string ,tstrings)))

MAKE-ARC-SLOTS returns slots for the CM arc label structure.

(defun make-arc-slots (slots)
(mapcar

S 2

NRL REPORT 9167

#'(lambda (slot)
'C(,(strings-to-symbol (string (slot-label slot)) "!!")

(allocate!! ,(if (slot-initial-value slot)
'C!! ,(slot-initial-value slot)))

,(slot-name slot)
,C(if (slot-type slot)

'(',(slot-type slot))))))
slots))

MAKE-CM-ARC writes the defstruct form to create the CM arc label structure
called LABEL-NAME and containing the given SLOTS.

(defun make-cm-arc (label-name slots)
'(defstruct (arc-label

(:conc-name
,(strings-to-symbol (string label-name) "-i-")))

,N(make-arc-slots slots)

)

MAKE-ARC-ACCESSORS writes the accessor macros for the CM arc label structure.

(defun make-arc-accessors (label-name slots)
(mapcar

' (lambda (slot)
(let* ((slot-label (string (slot-label slot)))

(slot-accessor
'(list ',(strings-to-symbol (string label-name) "-i-" slot-label "!!")

arc)))
'(defmacro

,(strings-to-symbol (string label-name) "-" slot-label "!!
(arc)
,(if (slot-type slot)

'(list 'the ',(slot-type slot) ,slot-accessor)
slot-accessor))))

slots)
)

MAKE-FE-ARC writes the defstruct form to create the FE arc label structure
called LABEL-NAME and containing the given SLOTS.

(defun make-fe-arc (label-name slots)
'(defstruct ,label-name

,C(mapcar 3'slot-label slots)))

MAKE-ARC-COPIER writes the arc label copy function to copy an FE arc label
into the CM arc label at the processor with the given cube ADDR.

(defun make-arc-copier (label-name slots)
'(defun *copy-arc-label (label!! addr label)

(setf
,Q(mapcan

X'(lambda (slot)
'((pref (,(strings-to-symbol

(string label-name) "-" (string (slot-label slot)) "!!")
label!!) addr)

(,(strings-to-symbol
(string label-name) "-" (string (slot-label slot)))

label))
)

slots))
label)

DEF-ARC-LABEL defines corresponding FE and CM arc label structures
called LABEL-NAME and containing the given SLOTS.

(defmacro def-arc-label (label-name tbody slots)
'(progn

83

E. M. DEPRIT

,(make-cm-arc label-name slots)
,CVmake-arc-accessors label-name slots)
,(make-fe-arc label-name slots)
,(make-arc-copier label-name slots)

Arc Label Access

FOR-ALL-ARC-STARTS loops through all slot structures and executes BODY
with the currently selected set composed of all processors containing
the beginning of a graph arc. LABEL-NAME is bound to the current CM
arc label structure.

(defmacro for-all-arc-starts ((label-name) &body body)
(let ((time (gensym)))

'(let (slot
,label-name)

(dotimes (,time *time-quantum*)
(setf slot (aref slots[]!! ,time)

,label-name (slot-arc-label!! slot))
(*when (slot-startp!! slot)

,Nbody)))))

FOR-ALL-ARC-ENDS loops through all slot structures and executes BODY with
the currently selected set composed of all processors containing the end
of a graph arc. LABEL-NAME is bound to the current CM arc label structure.

(defmacro for-all-arc-ends ((label-name) &body body)
(let ((time (gensym)))

'(let (slot
label-name)

(dotimes (,time *time-quantum*)
(setf slot (aref slots[J!! ,time)

,label-name (slot-arc-label!! slot))
(*when (slot-endp!! slot)

,Cbody)))))

In Allegro CL, set FRED indentation for macros

#+:ccl
(progn
(pushnew '(for-all-arc-starts . 1)

ccl::*fred-special-indent-alist*
.test X'equal)

(pushnew '(for-all-arc-ends . 1)
ccl::*fred-special-indent-alist*
:test X'equal))

EOF

3+:ccl
(format t "%\"Graph Hooks\" loaded")

-a- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -a-

(in-package '*lisp)

Etienne Deprit
Naval Research Lab, Code 8242

84

NRL REPORT 9167

Tomboulian Implementation

Graph Construction

FREE-TO-SENDP!! returns a boolean-pvar indicating if each processor
is free to send in the current time step.

(defmacro free-to-sendp!! C)
'C"!! (slot-backward!! current-slot)

(neighbor-limit!!)))

WHEN-HAS-NEIGHBOR-P executes BODY with the currently seleced set
composed of processors with NEIGHBOR-NO links.

(defmacro when-has-neighbor-p ((neighbor-no) ibody body)
'(*when (has-neighbor-n-p!! ,neighbor-no)

,Cbody))

In Allegro CL, set FRED indentation for macro

#+:ccl
(pushnew '(when-has-neighbor-p . i)

ccl::*fred-special-indent-alist*
:test 3'equal)

WHEN-NEIGBHOR-FREE executes BODY with the currently selected set composed
of processors with neighbors free to receive along NEIGHBOR-NO link.

(defmacro when-neighbor-free ((neighbor-no) &body body)
'(progn

(pref-1-neighbor!! neighbor-slot-forward!!
(slot-forward!! current-slot)
,neighbor-no)

(*when (=!! neighbor-slot-forward!! (neighbor-limit!!))
,Cbody)))

In Allegro CL, set FRED indentation for macro

#+:ccl
(pushnew '(when-neighbor-free . 1)

ccl::*fred-special-indent-alist*
:test 3'equal)

WHEN-SHORTER-PATH-TO-NEIGBHOR executes BODY with the currently selected set
composed of processors with shorter trial-paths along NEIGHBOR-NO link.

(defmacro when-shorter-path-to-neighbor ((neighbor-no) &body body)
'(progn

(pref-1-neighbor!! neighbor-slot-length!! trial-slot-length!! ,neighbor-no)
(*when (or!!

C"!! neighbor-slot-length!! C!! 0))
(trial-slot-length!! last-trial-slot)
neighbor-slot-length!!))

,Cbody)))

In Allegro CL, set FRED indentation for macro

#+:ccl
(pushnew '(when-shorter-path-to-neighbor . 1)

ccl::*fred-special-indent-alist*
:test 3'equal)

UPDATE-TRIAL-PATH-TO-NEIGHBOR updates a trial-path for each processor
in the currently selected set along NEIGHBOR-NO link.

(defmacro update-trial-path-to-neighbor (neighbor-no)
'(progn

85

E. M. DEPRIT

(*pset-1-neighbor C!! (the neighbor-no (neighbor-no-inverse ,neighbor-no)))
(trial-slot-direction!! current-trial-slot)
,neighbor-no)

(*pset-l-neighbor (the path-length-pvar (1+!! (trial-slot-length!! last-trial-slot)))
(trial-slot-length!! current-trial-slot)
,neighbor-no)))

FLOOD-TRIAL-PATHS floods all possible shortest trial-paths from the processor
with cube address FROM-ADDR to the processor at TO-ADDR. FLOOD-TRIAL-PATHS
returns T if some trial-path reached TO-ADDR, NIL otherwise. INC-TIME-QUANTUM-P
allows the time quantum to be incremented if the destination is not reached.

(defun flood-trial-paths (from-addr to-addr Akey inc-time-quantum-p)
(*all

(reset-trial-slots trial-slots[]!!)
(*set activep!! nil!!)
(setf (pref activep!! from-addr) t)

(let ((reached-p nil)
(base-time 0)
current-slot
current-trial-slot
(last-trial-slot (make-trial-slot -1)))

(*let (neighbor-slot-forward!!
trial-slot-length!!
neighbor-slot-length!!)

(declare (type neighbor-no-pvar neighbor-slot-forward!!)
(type path-length-pvar trial-slot-length!! neighbor-slot-length!!))

(do ()
((or reached-p

(and (plusp base-time) (not inc-time-quantum-p))))

(do ((time base-time (1+ time)))
((= time *time-quantum*))

(setf base-time *time-quantum*
current-slot (aref slots[]!! time)
current-trial-slot (aref trial-slots]! ! time))

(*set trial-slot-length!!
(trial-slot-length!! last-trial-slot))

(*when (and!! activep!! (free-to-sendp!!))
(dotimes (n *neighbor-limit*)

(when-has-neighbor-p (n)
(when-neighbor-free (n)

(when-shorter-path-to-neighbor Cn)
(update-trial-path-to-neighbor n))))))

(*set activep!! nil!!)
(*ahen (/=!! (trial-slot-direction!! current-trial-slot) (neighbor-limit!!
(*set activep!! t!!))

(when (pref activep!! to-addr)
(setf (pref activep!! to-addr) nil)
(if (= (pref (slot-forward!! current-slot) to-addr) *neighbor-limit*)

(setf reached-p t)
(setf (pref (trial-slot-length!! current-trial-slot) to-addr) O)))

(setf (pref activep!! from-addr) t)

(*set (trial-slot-length!! last-trial-slot)
(trial-slot-length!! current-trial-slot))

(setf (pref (trial-slot-length!! last-trial-slot) from-addr) 0)
)

(if (and (not reached-p) inc-time-quantum-p
(inc-time-quantum))

86

NRL REPORT 9167

(*deallocate-trial-slot last-trial-slot)
reached-p

SHORTEST-TRIAL-PATH-TIME returns the time step on arrival and path length
of the shortest trial-path reaching the destination processor at cube ADDR.

(defun shortest-trial-path-time (addr)
(let ((path-length (i+ *max-path-length*))

path-time
trial-slot-length)

(dotimes (time *time-quantum*)
(setf trial-slot-length

(pref (trial-slot-length!! (aref trial-slots[]!! time)) addr))
(if (and (plusp trial-slot-length)

(< trial-slot-length path-length))
(setf path-length trial-slot-length

path-time time)))
(if path-time

(values path-time path-length))))

TRACE-TRIAL-PATH-BACKWARDS traces the shortest trial-path backwards from
TO-ADDR to FROM-ADDR and updates the slots array to establish the arc.

(defun trace-trial-path-backwards (from-addr to-addr)
(let ((path-time (shortest-trial-path-time to-addr)))

(when path-time
(setf (pref (slot-endp!! (aref slots[]!! path-time)) to-addr) t)

(let (slot
trial-slot
neighbor-no
neighbor-addr)

(do ((time path-time (i- time))
(done-p nil))

(done-p (1+ time))

(setf slot (aref slots!]!! time)
trial-slot (aref trial-slots[]!! time))

(setf neighbor-no (pref (trial-slot-direction!! trial-slot) to-addr)
neighbor-addr (cube-from-neighbor-no to-addr neighbor-no)
(pref (slot-forward!! slot) to-addr) neighbor-no
(pref (slot-backward!! slot) neighbor-addr) (neighbor-no-inverse neighbor-no)
to-addr neighbor-addr)

(if (= from-addr to-addr)
(setf (pref (slot-startp!! slot) to-addr) t

done-p t)))

CONNECT-NODES creates an arc starting at FROM-ADDR and ending at TO-ADDR
and returns the start time step of the arc in the source processor.
If provided, the FE ARC-LABEL is copied into the CM arc label structure
at the start time in the source processor.

(defun connect-nodes (from-addr to-addr toptional arc-label)
(flood-trial-paths from-addr to-addr :inc-time-quantum-p t)
(let ((path-start-time (trace-trial-path-backwards from-addr

to-addr)))
(if arc-label

(*copy-arc-label
(slot-arc-label!! (aref slots[]!! path-start-time))
from-addr
arc-label))

path-start-time))

GRAPH-SLOTS-USAGE returns the percentage of graphs slots currently used.

87

E. M. DEPRIT

(defun graph-slots-usage C)
(let (current-slot

(no-slots-used 0)

total-no-slots)
(setf total-no-slots (* *time-quantum* (count-css)))
(dotimes (time *time-quantum*)
(setf current-slot (aref slots[]!! time))
(*when (not!! (free-to-sendp!!))
(incf no-slots-used (count-css))))

(/ (100.0 no-slots-used) total-no-slots)))

EOF

#':ccl
(format t "-/.\"Graph Construction\" loaded")

-a- Mode: LISP; Syntax: Common-lisp; Package: aLISP; Base: 10 -a-

(in-package '*lisp)

Etienne Deprit
Naval Research Lab, Code 8242

Tomboulian Implementation

Graph Utilities

DELETE-ARC deletes the graph arc beginning in the processor at START-ADDR at START-TIME.

(defun delete-arc (start-addr start-time)
(setf (pref (slot-startp!! (aref slots[]!! start-time)) start-addr) nil)

(let (slot)

(do ((time start-time (1+ time))
(from-addr start-addr)
to-addr
(done-p nil))

((or done-p (= time *time-quantum*)))

(setf slot (aref slots[]!! time)
to-addr (cube-from-neighbor-no from-addr

(pref (slot-backward!! slot) from-addr))
(pref (slot-backward!! slot) from-addr) *neighbor-limit*
(pref (slot-forward!! slot) to-addr) *neighbor-limit*
from-addr to-addr)

(if (pref (slot-endp!! slot) to-addr)
(setf (pref (slot-endp!! slot) to-addr) nil

done-p t)))

EOF

#+:ccl
(format t "%\"Graph Utilities\" loaded")

88

I

NRL REPORT 9167

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -a-

(in-package '*lisp)

Etienne Deprit
Naval Research Lab, Code 8242

Tomboulian Implementation

;;; Graph Routing

ROUTE-FORWARD implements the forward routing cycle by looping through all slot
structures in the time quantum. LABEL-NAME is bound to the current CM arc label
structure. IN-BOX!! is bound to the in-box pvar of type IN-BOX-TYPE. At each time
step, ROUTE-FORWARD calls ARC-START-FUNCTION with the currently selected set composed
of processors at the beginning of an arc to inject new messages into the routing cycle.
ROUTE-FORWARD also calls ARC-END-FUNCTION with the currently selected set composed
of processors at the end of an arc to receive messages.

(defmacro route-forward (label-name
in-box!!
in-box-type
arc-start-function
arc-end-function)

(let ((slot (gensym))
(out-box!! (gensym)))

'(let (,label-name)

(*all
(*let (,in-box!!

,out-box!!)
(declare (type ,in-box-type ,in-box!! ,out-box!!))
(map nil

3'(lambda (,slot)
(setf ,label-name (slot-arc-label!! ,slot))
(*if (slot-startp!! ,slot)

(*set ,out-box!!
,arc-start-function))

(*when (/=!! (slot-forward!! ,slot) (neighbor-limit!!))
(pref-neighbor!! ,in-box!! ,out-box!! (slot-forward!! ,slot))
(*set ,out-box!! ,in-box!!))

(*if (slot-endp!! ,slot)
,arc-end-function))

slots[]!)

ROUTE-BACKWARD implements the backward routing cycle by looping through all slot
structures in the time quantum. LABEL-NAME is bound to the current CM arc label
structure. IN-BOX!! is bound to the in-box pvar of type IN-BOX-TYPE. At each time
step, ROUTE-FORWARD calls ARC-START-FUNCTION with the currently selected set composed
of processors at the end of an arc to inject new messages into the routing cycle.
ROUTE-FORWARD also calls ARC-END-FUNCTION with the currently selected set composed
of processors at the beginning of an arc to receive messages.

(defmacro route-backward (label-name
in-box!!
in-box-type
arc-start-function
arc-end-function)

(let ((slot (gensym))
(out-box!! (gensym)))

'(let (,label-name)

89

E. M. DEPRIT

(*all
(*let (,in-box!!

,out-box!!)
(declare (type ,in-box-type ,in-box!! ,out-box!!))
(map nil

3'(lambda (,slot)
(setf ,label-name (slot-arc-label!! ,slot))
(*if (slot-endp!! ,slot)

(*set ,out-box!!
,arc-start-function))

(*when (/=!! (slot-backward!! ,slot) (neighbor-limit!!))
(pref-neighbor!! ,in-box!! ,out-box!! (slot-backward!! ,slot))
(*set ,out-box!! ,in-box!!))

(*if (slot-startp!! ,slot)
,arc-end-function))

(reverse slots[]!!))

EOF

#+:ccl
(format t "%\"Graph Routing\" loaded")

;;; -a-Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -a-

(in-package '*lisp)

Etienne Deprit
Naval Research Lab, Code 8242

Tomboulian Implementation

Neural Net Front-End Structures

SLAB set of units
BUNDLE set of connections between 2 slabs with density 0-100%
NET sets of slabs and bundles,

with input & output slab (possibly the same)
represents CONTINUOUS-MAPPING or ASSOCIATIVE-MEMORY net

Slab of units

(defstruct (net-slab
X+:symbolics
(:named)
(:conc-name slab-)
(:constructor fe-make-slab-internal)
(:print-function print-slab)
)

no slab id
inputp ; input slab?
outputp ; output slab?
size ; no of units
addr ; array of cube addrs of units

PRINT-SLAB prints SLAB on STREAM.

90

NRL REPORT 9167

(defun print-slab (slab stream toptional depth)
(declare (ignore depth))
(format stream "#<Slab -a, -a unit-:*a[s-;-:;si]-:[-; It 117; O]>"

(slab-no slab) (slab-size slab)
(slab-inputp slab) (slab-outputp slab)))

SLAB-NO!! returns a slab-no-pvar pvar containing the SLAB id in each processor.

(defmacro slab-no!! (slab)
'(the slab-no-pvar C!! (slab-no ,slab))))

SLAB-INPUTP!! returns a boolean pvar containing T if SLAB is the input slab.

(defmacro slab-inpntp!! (slab)
'(the boolean-pvar C!! (slab-inputp ,slab))))

SLAB-OUTPUT!! returns a boolean pvar containing T if SLAB is the output slab.

(defmacro slab-outputp!! (slab)
'(the boolean-pvar (!! (slab-outputp ,slab))))

Bundle of connections

(defstruct (net-bundle
3+:symbolics
(:named)
(:conc-name bundle-)
(:constructor fe-make-bundle-internal)
(:print-function print-bundle)
)

no ; bundle id
to-slab ; connections to slab
from-slab ; connections from slab
density ; density of connections, 0-100%
size ; no of connections

connection = (to-no,from-no)
to-no ; array of to-slab unit ids
from-no ; array of from-slab unit ids
start-time ; start time step of connections
)

PRINT-BUNDLE prints BUNDLE on STREAM.

(defun print-bundle (bundle stream &optional depth)
(declare (ignore depth))
(format stream "*<Bundle -a <- -a, -a%>"

(slab-no (bundle-to-slab bundle))
(slab-no (bundle-from-slab bundle))
(bundle-density bundle)))

BUNDLE-NO!! returns a bundle-no-pvar pvar containing the BUNDLE id in each processor.

(defmacro bundle-no!! (bundle)
'(the bundle-no-pvar (!! (bundle-no ,bundle))))

Neural net

(defstruct (neural-net
3+:symbolics
(:named)
(:conc-name net-)
(:constructor fe-make-net-internal)
(:print-function print-net)
)

name
type ; CONTINOUS-MAPPING or ASSOCIATIVE-MEMORY
(allocation-mode :grid-center) ; allocation mode for slabs

slabs ; array of slabs

91

E. M. DEPRIT

input-slab-no ; input slab id
output-slab-no ; output slab id
bundles array of bundles
no-units ; total number of units
no-connect ions connect ions
no-processors processors

(a 1.0) ; dynamical system equation constants
(b 1.0)

(eta 0.25) ; learning rate
(alpha 0.9) ; momentum term

(epsilon-x 0.001) ; feed-forward convergence criterion
('c-iterations 4) ; min iterations before convergence test
(epsilon-y 0.001) ; back-propagate convergence criterion
(y-iterations 4) ; min iterations before convergence test
(epsilon-w 0.1) ; weight update convergence criterion
(max-updates 10000) ; max weight updates in training

PRINT-NET prints NET on STREAM.

(defun print-net (net stream &optional depth &key verbose-p)
(declare (ignore depth))
(if (not verbose-p)

(format stream
"#<Net -a -a slaba:*j[s';-:;s-I, -a bundlea:*-[s-;-:;st1>"
(net-name net)
(length (net-slabs net))
(length (net-bundles net)))

(format stream "-%-a net: -a" (net-type net) (net-name net))
(format stream "-2%-a slaba:*-[s-;-:;stJ, -a bundlea:*i[s-;-:;stI"

(length (net-slabs net)) (length (net-bundles net)))
(format stream "-%-a unit-:*a[s-;-:;sC], -a connection-:*-[s-;-: s;] ->-

-a processora:*-[s-;-:;s-]"
(net-no-units net) (net-no-connections net) (net-no-processors net))

(format stream "-2%a = -a, b = -a" (net-a net) (net-b net))
(format stream "2%Feed-forward convergence = 'a, min -a iteration-:* [s ;,:;s-]"

(net-epsilon-x net) (net-x-iterations net))
(format stream "%Back-propagate convergence = -a, min -a iteration-:*a[sV;-:;st]"

(net-epsilon-y net) (net-y-iterations net))

(format stream "2'2%eta = -a, alpha = -a" (net-eta net) (net-alpha net))
(format stream "-%Weight update convergence = -a, max -a iterationa:*i[sC,7:,s-]"

(net-epsilon-w net) (net-max-updates net))
(terpri stream)))

GET-SLAB returns the slab with id SLAB-NO in NET.

(defmacro get-slab (net slab-no)
'(aref (net-slabs ,net) ,slab-no))

GET-INPUT-SLAB returns the input slab in NET.

(defmacro get-input-slab (net)
'(aref (net-slabs ,net) (net-input-slab-no ,net)))

GET-OUTPUT-SLAB returns the output slab in NET.

(defmacro get-output-slab (net)
'(aref (net-slabs ,net) (net-output-slab-no ,net)))

GET-BUNDLE returns the bundle with id BUNDLE-NO in NET.

(defmacro get-bundle (net bundle-no)
'(aref (net-bundles ,net) ,bundle-no))

MEMORY-NETP returns T if NET is an ASSOCIATIVE-MEMORY net.

92

NRL REPORT 9167

(defmacro memory-netp (net)
'(eq (net-type ,net) 'associative-memory))

;;; EOF

3+:ccl
(format t "%\"Net FE Structures\" loaded")

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -a-

(in-package '*lisp)

Etienne Deprit
Naval Research Lab, Code 8242

;;; Tomboulian Implementation

;; Net CM Structures

Units

'(type boolean-pvar unitp!!))
'(type boolean-pvar inputp!!))
'(type boolean-pvar outputp!!))
'(type slab-no-pvar slab-no!!))
'(type unit-no-pvar unit-no!!))

(*defvar unitp!! nil!!)
(*defvar inputp!! nil!!)
(*defvar outputp!! nil!!)
(*defvar slab-no!!)
(*defvar unit-no!!)

; processor is net unit?
; input unit?
; output unit?
; unit slab id
; unit id

; Variables appearing in feed-forward and back-propagation equations

(*proclaim '(type
(*proclaim '(type
(*proclaim '(type
(*proclaim '(type
(*proclaim '(type
(*proclaim '(type
(*proclaim '(type
(*proclaim '(type
(*proclaim '(type
(*proclaim '(type
(*proclaim '(type
(*proclaim '(type

single-float-pvar a!!))
single-float-pvar b!!))
single-float-pvar X!!))
single-float-pvar Z!!))
single-float-pvar dX!!))
single-float-pvar U!!))
single-float-pvar LogU!!))
single-float-pvar I!!))
single-float-pvar Y!!))
single-float-pvar dY!!))
single-float-pvar V!!))
single-float-pvar J!!))

(*defvar a!!)
(*defvar b!!)
(*defvar X!!)
(*defvar X!!)
(*defvar Z!!)

(*defvar dX!!)
(*defvar U!!)
(*defvar LogU!!)
(*defvar I!!)
(*defvar Y!!)

93

(*proclaim
(*proclaim
(*proclaim
(*proclaim
(*proclaim

E. M. DEPRIT

(*defvar dY!!)
(*defvar V!!)
(*defvar J!!)

(*proclaim '(type single-float-pvar epsilon-x!!))
(*proclaim '(type single-float-pvar epsilon-y!!))
(*proclaim '(type single-float-pvar epsilon-w!!))

(*defvar epsilon-x!!)
(*defvar epsilon-y!!)
(*defvar epsilon-w!!)

(*proclaim '(type single-float-pvar eta!!))
a*proclaim '(type single-float-pvar alpha!!))

(*defvar eta!!)
(*defvar alpha!!)

; feed-forward convergence criterion
; back-propagate convergence criterion
; weight update convergence criterion

; learning rate
; momentum term

; Connections

; Define arc labels for net connections

(def-arc-label connection
(W nil 'weight single-float-pvar)
(dW nil 'dW single-float-pvar)
(dWold nil 'dWold single-float-pvar)

; connection weight
; current gradient
; previous gradient

;;; EOF

#+:ccl
(format t "-%\"CM Net Structures\" loaded")

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -a-

(in-package '*lisp)

Etienne Deprit
Naval Research Lab, Code 8242

Tomboulian Implementation

Make Net Structures on Front-End

Front-End slab structure

FE-MAKE-SLAB returns a net slab of SIZE units with id NO. INPUTP and OUTPUTP
indicate if this slab is the input or output slab, respectively.

(defun fe-make-slab (no size inputp outputp)
(fe-make-slab-internal :no no

:size size
:inputp inputp
:outputp outputp))

Front-End bundle structure

RANDOM-CONNECTIONS returns ROW number and COL number arrays representing a bundle

94

NRL REPORT 9167

of connections to a slab of TO-SIZE units from a slab of FROM-SIZE units.
Each possible connection is formed with probability given by DENSITY.

(defun random-connections (to-size from-size density)
(let (n row col)
(setf density (/ density 100.0))
(*all
(*let ((rendezvous!! C!! O)))
(declare (type cube-address-pvar rendezvous!!))
(*when (and!! C<!! (self-address!!)

(the max-int-pvar C!! (* to-size from-size))))
C<!! (random-float!! (!! 0.5) (!! 0.5))

(the float-pvar C!! density))))
(setf n (count-css))
(*pset :no-collisions

(self-address!!)
rendezvous!!
(enumerate!!)))

(setf row (make-array n)
col (make-array n))

(pvar-to-array (truncate!! rendezvous!! (!! from-size))
row
:cube-address-end n)

(pvar-to-array (mod!! rendezvous!! (!! from-size))
col
:cube-address-end i)))

(values row col)))

FE-MAKE-BUNDLE returns a bundle with id NO connecting TO-SLAB and FROM-SLAB
with the probability of each connection given by DENSITY.

(defun fe-make-bundle (no to-slab from-slab density)
(let ((bundle (fe-make-bundle-internal

:no no
:to-slab to-slab
:from-slab from-slab
:density density)))

(multiple-value-setf
((bundle-to-no bundle)
(bundle-from-no bundle))

(random-connections (slab-size to-slab)
(slab-size from-slab)
density))

(setf (bundle-size bundle) (length (bundle-to-no bundle)))
bundle))

Front-End net structure

A bundle spec is a list of the form (<to slab id> <from slab id> <density>).

(defstruct (bundle-spec
(:type list))

to-slab
from-slab
density)

FE-MAKE-NET returns the net NAME of the given TYPE (CONTINOUS-MAPPING or
ASSOCIATIVE-MEMORY). SLABS must be a list of total units in each slab, and
INPUT-SLAB-NO and OUTPUT-SLAB-NO identify the input and output slabs,
respectively. BUNDLES must be a list of bundle specifications. Additional
keyword arguments are passed in to FE-MAKE-NET-INTERNAL allowing other
net parameters to be set.

(defun fe-make-net (name type slabs input-slab-no output-slab-no bundles
trest other-net-keys tkey tallow-other-keys)

(let ((net (apply 3'fe-make-net-internal
:name (string name)
:type type
:input-slab-no input-slab-no

95

E. M. DEPRIT

:output-slab-no output-slab-no
other-net-keys)))

(let ((slab-no -1))
(setf (net-slabs net)

(map 'array
3'(lambda (slab-size)

(fe-make-slab (incf slab-no)
slab-size
(eq input-slab-no slab-no)
(eq output-slab-no slab-no)))

slabs)))
(let ((bundle-no -1))

(setf (net-bundles net)
(map 'array

3'(lambda (bundle)
(fe-make-bundle (incf bundle-no)

(get-slab net (bundle-spec-to-slab bundle))
(get-slab net (bundle-spec-from-slab bundle))
(bundle-spec-density bundle)))

bundles)))
(fe-size-net net)
net))

FE-SIZE-NET sets the total number of units, connections and processors required by NET.

(defun fe-size-net (net)
(setf (net-no-units net)

(reduce 3'+
(map 'list *'slab-size (net-slabs net)))

(net-no-connections net)
(reduce X'+

(map 'list 3'bundle-size (net-bundles net)))
(net-no-processors net)
(net-no-units net)))

CONTINUOUS-MAPPING net

DEF-MAPPING-NET returns a CONTINUOUS-MAPPING net called NAME specified by
the keyword argguments SLABS, INPUT-SLAB-NO, OUTPUT-SLAB-NO and BUNDLES.
Additional keyword arguments can be used to specify other net parameters.

(defmacro def-mapping-net (name trest other-net-keys
tkey slabs input-slab-no output-slab-no bundles
tallow-other-keys)

'(progn
(defvar ,name)
(setf ,name (fe-make-net ',name

'continuous-mapping
,slabs
,input-slab-no
,output-slab-no
,bundles
,Oother-net-keys))

(cm-net-cold-boot ,name)
(cm-make-net ,name)))

ASSOCIATIVE-MEMORY net

DEF-MEMORY-NET returns an ASSOCIATIVE-MEMORY net called NAME specified by
the keyword argguments SLABS, INPUT-SLAB-NO and BUNDLES. Additional keyword
arguments can be used to specify other net parameters.

(defmacro def-memory-net (name trest other-net-keys
tkey slabs input-slab-no bundles
tallow-other-keys)

'(progn
(defvar ,name)
(setf ,name (fe-make-net ',name

'associative-memory

96

NRL REPORT 9167

,slabs
,input-slab-no
,input-slab-no
,bundles
,Cother-net-keys))

(cm-net-cold-boot ,name)
(cm-make-net ,name)))

EOF

#+:ccl
(format t "-%\"FE Make Net\" loaded")

-a-Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -a-

(in-package '*lisp)

Etienne Deprit
Naval Research Lab, Code 8242

Tomboulian Implementation

Make Net Structures on CM

CM slab structure
CM-MAKE-SLAB creates the structure for SLAB on the CM according to ALLOCATION-MODE.

(defun cm-make-slab (slab allocation-mode)
(let ((slab-size (slab-size slab)))

(with-n-proc-allocated (slab-size slab-addr allocation-mode)
(setf (slab-addr slab) slab-addr)
(*set unitp!! t!!

inputp!! (slab-inputp!! slab)
outputp!! (slab-outputp!! slab)
slab-no!! (slab-no!! slab)
unit-no!! (enumerate!!))))

slab)

CM bundle structure
CM-MAKE-BUNDLE creates the structure for BUNDLE on the CM.

(defun cm-make-bundle (bundle)
(let ((to-addr (slab-addr (bundle-to-slab bundle)))

(from-addr (slab-addr (bundle-from-slab bundle))))
(setf (bundle-start-time bundle)

(map 'array 3'(lambda (from-no to-no)
(connect-nodes (aref from-addr from-no)

(aref to-addr to-no)))
(bundle-from-no bundle)
(bundle-to-no bundle))))

bundle)

CM net structure
CM-NET-COLD-BOOT cold boots the CM with the dimensions necessary for NET.

(defun cm-net-cold-boot (net)
(let ((cm-dims (cm-best-fit-dims (net-no-processors net))))

(or cm-dims
(error "Net -a too large for CM" (net-name net)))

97

E. M. DEPRIT

(*cold-boot :initial-dimensions cm-dims)))

CM-MAKE-NET creates the structure for NET on the CM.

(defun cm-make-net (net)
(map nil 3'(lambda (slab)

(cm-make-slab slab (net-allocation-mode net)))
(net-slabs net))

(map nil #'(lambda (bundle)
(cm-make-bundle bundle))

(net-bundles net))
(*all
(*when unitp!!
(*set a!! (the float-pvar C!! (net-a net)))

b!! (the float-pvar C!! (net-b net)))
epsilon-x!! (the float-pvar C!! (net-epsilon-x net)))
epsilon-y!! (the float-pvar C!! (net-epsilon-y net)))
epsilon-w!! (the float-pvar C!! (net-epsilon-w net)))
eta!! (the float-pvar C!! (net-eta net)))
alpha!! (the float-pvar C!! (net-alpha net))))))

(cm-reset-weights)
net)

CM-RESET-WEIGHTS resets the weights for each connection in the net
to a random float in the interval [mean-interval , mean+interval].

(defun cm-reset-weights (toptional (mean 0.0) (interval 0.5))
(for-all-arc-starts (connection!!)
(*set (connection-W! connection!!)

(random-float!!
(the float-pvar C!! mean))
(the float-pvar C!! interval))))))

EOF

#+:ccl
(format t "-%\"CM Make Net\" loaded")

-a- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -a-

(in-package '*lisp)

Etienne Deprit
;;; Naval Research Lab, Code 8242

Tomboulian Implementation

CM Net Access

Slab Access

GET-SLAB-PVAR returns an array containing the values of PVAR
for the slab with id SLAB-NO in NET.

(defun get-slab-pvar (net slab-no pvar)
(let ((slab (get-slab net slab-no)))
(*all

98

NRL REPORT 9167

(*let (mail-box!!)
(awhen (and!! unitp!! (=!! slab-no!! (slab-no!! slab)))
(*pset :no-collisions pvar mail-box!! (enumerate!!))
(pvar-to-array mail-box!! (make-array (slab-size slab))

:cube-address-end (count-css)))))))

GET-SLAB-X returns an array containing the values of X!!
for the slab with id SLAB-NO in NET.

(defmacro get-slab-X!! (net slab-no)
'(get-slab-pvar ,net ,slab-no X!!))

GET-NET-OUTPUT returns an array containing the output values of NET.

(defmacro get-net-output (net)
'(get-slab-X!! ,net (net-output-slab-no ,net)))

Bundle Access

GET-BUNDLE-W returns an array containing the values of W!!
for the bundle with id BUNDLE-NO in NET.

(defun get-bundle-W!! (net bundle-no)
(let* ((bundle (get-bundle net bundle-no))

(from-slab (bundle-from-slab bundle))
(from-addr (slab-addr from-slab))
(from-no (bundle-from-no bundle))
(start-time (bundle-start-time bundle))
(W (make-array (bundle-size bundle))))

(dotimes (c (bundle-size bundle))
(setf (aref W c)

(pref (aref slots[]!! (aref start-time c))
(aref from-addr (aref from-no c)))))

EOF

#+:ccl
(format t "-%\"CM Net Access\" loaded")

-a- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -a-

(in-package '*lisp)

;; Etienne Deprit
Naval Research Lab, Code 8242

Tomboulian Implementation

Training Sets

Training Examplar

(defstruct (examplar
(:type list))

input-pvar
input-vec

99

E. M. DEPRIT

target-pvar
target-vec)

Training Set

(defstruct (training-set
(:type list))

type ; MAPPING-SET or MEMORY-SET
name
exemplars) ; list of exemplars

GET-EXAMPLAR returns the examplar with id EXAMPLAR -NO in TRAINING-SET.

(defmacro get-examplar (training-set examplar-no)
(nth ,examplar-no (training-set-examplars ,training-set)))

CM-LOAD-TRAINING-PAIR loads the INPUT/TARGET training vectors into the
CONTINUOUS-MAPPING net structure on the CM and returns an examplar
containing the INPUT and TARGET vectors. The pvars corresponding
to the training pair are marked with the given SET-NAME and PAIR-NO.

(defun cm-load-training-pair (set-name pair-no input target)
(*all
(let ((input!! (allocate!! nil

(format nil "a-a-I" set-name pair-no)
'float-pvar))

(target!! (allocate!! nil
(format nil "a-a-T" set-name pair-no)
'float-pvar)))

(*let (mail-box!!)
(declare (type float-pvar mail-box!!))
(array-to-pvar input mail-box!! :cube-address-end (length input))
(*awhen inputp!!

(*set (the float-pvar input!!)
(pref!! mail-box!! unit-no!! :collision-mode :no-collisions)))

(array-to-pvar target mail-box!! :cube-address-end (length target))
(*when outputp!!
(*set (the float-pvar target!!)

(pref!! mail-box!! unit-no!! :collision-mode :no-collisions))))
(list input!! input target!! target))))

CM-LOAD-MAPPING-SET loads the TRAINING-PAIRS labeled SET-NAME into the
CONTINUOUS-MAPPING net structure on the CM and returns the resulting
training set. TRAINING-PAIRS must be a list of input/target vector lists.

(defun cm-load-mapping-set (set-name training-pairs)
(let ((pair-no -1))

(list 'mapping-set set-name
(mapcar X'(lambda (pair)

(cm-load-training-pair set-name
(incf pair-no)
(first pair)
(second pair)))

training-pairs))))

CM-LOAD-MEMORY-INPUT loads the INPUT vector into the CONTINUOUS-MAPPING
net structure on the CM and returns an examplar. The pvar corresponding
to the INPUT vector is marked with the given SET-NAME and INPUT-NO.

(defun cm-load-memory-input (set-name input-no input)
(*all
(let ((input!! (allocate!! nil

(format nil '"a--a-I" set-name input-no)
'float-pvar)))

(*let (mail-box!!)
(declare (type float-pvar mail-box!!))
(array-to-pvar input mail-box!! :cube-address-end (length input))
(*when inputp!!
(*set (the float-pvar input!!)

100

NRL REPORT 9167

(pref!! mail-box!! unit-no!! :collision-mode :no-collisions))))
(list input!! input input!! input))))

CM-LOAD-MEMORY-SET loads the TRAINING-LIST labeled SET-NAME into the
CONTINOUS-MAPPING net structure on the CM and returns the resulting
training set. The TRAINING-LIST must be a list of input vectors.

(defun cm-load-memory-set (set-name training-set)
(let ((input-no -1))

(list 'memory-set set-name
(mapcar 3'(lambda (input)

(cm-load-memory-input set-name
(incf input-no)
input))

training-set))))

CM-UNLOAD-TRAINING-SET unloads TRAINING-SET from the CONTINUOUS-MAPPING or
ASSOCIATIVE-MEMORY net structure on the CM. The pvars in the TRAINING-SET
array are deallocated and should no longer be accessed.

(defun unload-training-set (training-set)
(let ((type (training-set-type training-set)))
(map nil

#'(lambda (examplar)
(*deallocate (examplar-input-pvar examplar))
(if (eq type 'mapping-set)

(*deallocate (examplar-target-pvar examplar))))
(training-set-examplars training-set))))

PRINT-TRAINING-SET prints the TRAINING-SET's input/target or
input vectors for a MAPPING-SET or MEMORY-SET, respectively.

(defun print-training-set (training-set)
(let ((type (training-set-type training-set)))

(format t "-2%-a: -a" type (training-set-name training-set))
(map nil

*'(lambda (examplar)
(format t "-%i: ") (print-vec (examplar-input-vec examplar))
(when (eq type 'mapping-set)
(format t " t: ") (print-vec (examplar-target-vec examplar))))

(training-set-examplars training-set))))

EOF

3+:ccl
(format t "%\"Training Sets\" loaded")

-a-Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -a-

(in-package '*lisp)

Etienne Deprit
Naval Research Lab, Code 8242

;;; Tomboulian Implementation

Net Learning

DEBUG-LEARNING sets toggles the :NET-DEBUG flag in the features list.

101

E. M. DEPRIT

(defun debug-learning (toptional (debug-on t))
(if debug-on

(pushnew :net-debug *features*)
(setf *features* (delete :net-debug *features*))))

Scalar LOGISTIC function

(defun logistic (x)
(/ (1+ (exp (- x)))))

Parallel LOGISTIC function

"'efmacro logistic!! (x!!)
'(/!! (the single-float-pvar (1+!! (exp!! C-!! ,x!!))))))

Scalar LOGISTIC derivative

(defun dLogistic Cx)
(let ((logistic (logistic x)))
(* logistic (- 1 logistic))))

Parallel LOGISTIC derivative

(defmacro dLogistic!! (x!!)
(let ((logistic!! (gensym)))
'(*let ((logistic!! (logistic!! ,x!!)))

(declare (type single-float-pvar logistic!!))
Ca!! logistic!! (-!! C!! 1) logistic!!))))

*NORM of pvar

(defmacro *norm (x!!)
'(sqrt (*sum (*!! ,x!! ,x!!))))

Feed-forward

FEED-FORWARD computes a single feed-forward cycle of NET with the given INPUT!!.
If NET is an ASSOCIATIVE-MEMORY net and LATCHED-P is T, then FEED-FORWARD
operates on the master network rather than the slave network.

(defun feed-forward (net input!! tkey latched-p)
(*all
(*when unitp!!

(*set I!! C!! 0.0)
X!! C!! 0.5)
dX!! C!! 0.5))

(*when inputp!!
(if (memory-netp net)

(*set X!! (the single-float-pvar input!!))
(*set I!! (the single-float-pvar input!!))))

(*set Z!! X!!)

(do C)
((*and C<!! (abs!! dX!!) epsilon-x!!)))

(dotimes (i (net-x-iterations net))
#+:net-debug
(progn

(format-pvars (U!! LogU!! dX!! X!! Z!!))
(format t "-%Hit any key to continue: ") (read-char))

(*set U!! C!! 0.0))

(route-forward connection!! WZi!! single-float-pvar
(*!! Z!! (connection-W!! connection!!))

102

NRL REPORT 9167

(*set U!! (+!! U!! WZi!!)))
(*set LogU!! (logistic!! U!!)

dX!! (+!! (*!! a!! (-!! X!!)) (*!! b!! LogU!!) I!!)
X!! (+!! X!! dM!!)
Z!! X!!)

(if latched-p
(*when inputp!!
(*set Z!! (the single-float-pvar input!!))))

Back-Propagate

BACK-PROPAGATE computes a single back-propagation cycle of NET with the given TARGET!.

(defun back-propagate (net target!!)
(*all
(*when unitp!!
(*if outputp!!

(*set J!! (-!! (the single-float-pvar target!!) X!!))
(*set J!! C!! 0.0)))

(*set Y!! C!! 0.0)
dY!! C!! 0.5))

(do ()
((*and (<!! (abs!! dY!!) epsilon-y!!)))

(dotimes (i (net-y-iterations net))
3+:net-debug
(progn

(format-pvars (LogU!! V!! dY!! Y!!))
(format t "-%Hit any key to continue: ") (read-char))

(*set V!! C!! 0.0))
(route-backward connection!! Yj!! single-float-pvar

Y!!

(*set V!! C+!! V!! (*!! Yj!! (connection-W!! connection!!)))))
(if (memory-netp net)

(*when inputp!!
(*set V!! C!! 0.0))))

(*set dY!! C+!! (a!! a!! (-!! Y!!))
Ca!! b!! LogU!! (-!! C!! 1.0) LogU!!)

(+!! V!! J!!)))
Y!! (+!! Y!! dY!!))

Gradient Update

GRADIENT-UPDATE increments the current weight-space gradient.

(defun gradient-update C)
(route-backward connection!! Yj!! single-float-pvar

Y!!

(*set (connection-dW!! connection!!)
(+!! (connection-dW!! connection!!)

Ca!! Yj!! Z!!)))))

Weight Update

WEIGHT-UPDATE updates the connection weights using the current and last gradients.

(defun weight-update C)
(for-all-arc-starts (connection!!)

103

E. M. DEPRIT

(*set (connection-W!! connection!!)
C+!! (connection-W!! connection!!)

(a!! eta!! (connection-dW!! connection!!))
Ca!! alpha!! (connection-dWold!! connection!!)))

(connection-dWold!! connection!!)
(connection-dW!! connection!!))

Net Training

STEEPEST-DESCENT performs a true steepest-descent adjustment of the connection weights
for the input/target pairs in TRAINING-SET. STEEPEST-DESCENT returns T or NIL
indicating if TRAINING-SET has been learned within the weight update criterion and
the current target error. If provided, the PRINT-NET-IO function is called to report
the net's input and output.

(defun steepest-descent (net training-set tkey print-net-io)
(let ((learned-p t)

(target-error 0.0))
(*all
(for-all-arc-starts (connection!!)
(*set (connection-dW!! connection!!) C!! 0.0)))

(dolist (examplar (training-set-examplars training-set))

(feed-forward net (examplar-input-pvar examplar) :latched-p (memory-netp net))
(back-propagate net (examplar-target-pvar examplar))
(*when outputp!!
(setf learned-p

(and learned-p
(*and (<!! (abs!! J!!) epsilon-w!!))))

(incf target-error (*norm J!!)))

(if print-net-io
(funcall print-net-io (examplar-input-vec examplar) (get-net-output net)))

(gradient-update))

(weight-update))

(values learned-p target-error))

TRAIN-NET trains NET using the given TRAINING-SET. If specified, PRINT-TRAINING-SET
is called to print the current TRAINING-SET. In addition, PRINT-NET-IO may be used
to report the net's input and output each PRINT-INTERVAL iterations.

(defun train-net (net training-set kkey print-training-set print-interval print-net-io)
(format t "-2%Net Training-")
(print-net net t nil :verbose-p t)
(if print-training-set

(funcall print-training-set training-set))

(*all
(for-all-arc-starts (connection!!)
(*set (connection-dWold!! connection!!) C!! 0.0))))

(do ((iteration 0 (1+ iteration))
(learned-p nil)
target-error
(print-net-io-p print-interval

(and print-interval
(zerop (mod (1+ iteration) print-interval)))))

((or learned-p
(and (net-max-updates net)

(= iteration (net-max-updates net))))

104

NRL REPORT 9167

(format t "2%Training set -:[not -;-]learned after -a iteration":*a[s-,-:;sK]."%"
learned-p iteration)

(when (and print-interval print-net-io)
(map nil 3'(lambda (examplar)

(feed-forward net (examplar-input-pvar examplar))
(funcall print-net-io

(examplar-input-vec examplar)
(get-net-output net)))

(training-set-examplars training-set))
(format t "-%Error = -a" target-error)))

(if print-net-io-p
(format t "2%Iteration -a" iteration))

(multiple-value-setf
(learned-p target-error)
(steepest-descent net

training-set
:print-net-io (if print-net-io-p print-net-io)))

(if print-net-io-p
(format t "-%Error = -a" target-error))

(values))

;;; EOF

#+:ccl
(format t "%\"Net Learning\" loaded")

-a- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -a-

(in-package '*lisp)

Etienne Deprit
Naval Research Lab, Code 8242

Tomboulian Implementation

OR Test Nets

IOR Continuous Mapping Net

(def-mapping-net or-mapping-net
:slabs '(2 1 1 1)
:input-slab-no 0

:output-slab-no 2
:bundles 0'(C 0 100)

(2 0 100)

(2 1 100)
(C 3 100)
(2 3 100)

(3 3 100)

(defvar *ior-mapping-pairs*)
(setf *ior-mapping-pairs*

105

E. M. DEPRIT

(list-to-array-pairs '(((0.0 0.0) (0.0))
((0.0 1.0) (1.0))
((1.0 0.0) (1.0))
((1.0 1.0) (1.0)))))

(defvar *ior-mapping-set*)
(setf *ior-mapping-set*

(cm-load-mapping-set 'ior-mapping-set *ior-mapping-pairs*))

(train-net or-mapping-net
ior-mapping-set
:print-training-set 3'print-training-set
:print-interval 10
:print-net-io X'print-io-vecs)

XOR Associative Memory Net

(def-memory-net or-memory-net
:slabs '(3 1)

:input-slab-no 0

:bundles '((0 0 100)

(O 1 100)
Cl 1 100)

)
:epsilon-w 0.05
)

(defvar *xor-memory-list*)
(setf *xor-memory-list*

(list-to-array '((0.0 0.0 0.0)
(0.0 1.0 1.0)
(1.0 0.0 1.0)
(1.0 1.0 0.0))))

(defvar *xor-memory-set*)
(setf *xor-memory-seta

(cm-load-memory-set 'xor-memory-set *xor-memory-list*))

(train-net or-memory-net
xor-memory-set
:print-training-set X'print-training-set
:print-interval 20
:print-net-io X'print-io-vecs)

EOF

#+:ccl
(format t "%\"Test Nets\" loaded")

-a- Mode: LISP; Syntax: Common-lisp; Package: *LISP; Base: 10 -a-

(in-package '*lisp)

Etienne Deprit
Naval Research Lab, Code 8242

Tomboulian Implementation

Time Nets

106

NRL REPORT 9167

CM-TIME-AND-PRINT times the execution of FORM and reports the timing statistics.

(defmacro cm-time-and-print (form)
(let ((elapsed-time (gensym))

(cm-time (gensym))
(percent (gensym)))

'(multiple-value-bind (,elapsed-time ,cm-time percent)
(cm:time ,form :return-statistics-only-p t)

(print-cm-timing ',(if (listp form) (first form) form)
,elapsed-time
,cm-time
,percent))))

PRINT-CM-TIMING prints the FE ELAPSED-TIME, CM-TIME and CM usage PERCENT
statistics for the given OPERATION.

(defun print-cm-timing (operation elapsed-time cm-time percent)
(format t "-%-a: -7,3f secs elapsed time, -7,3f secs CM time (-4,lf%)"

operation elapsed-time cm-time percent))

Mapping Net Timings

TIME-MAPPING-NET compiles timing statistics for the CONTINUOUS-MAPPING test net
up to MAX-N. INCREMENT controls granularity of the increment in net size.

(defun time-mapping-net (max-n tkey (increment 1))
(cmi::calibrate-cm-timer)
(let (mapping-net

mapping-set)
(do ((C 1 (+ increment n)))

((> n max-n))
(setf mapping-net

(fe-make-net 'mapping-net
:continuous-mapping
(list (a 4 n) (* 2 n) n 1)
0
2

'((1 0 100)
(2 0 100)
(2 1 100)
(I 3 100)
(2 3 100)
(3 3 100)
)

(format t "3%*** N = a ***" n)
(format t "-YJMapping net: -a units, -a connections -> a processors"

(net-no-units mapping-net)
(net-no-connections mapping-net)
(net-no-processors mapping-net))

(cm-net-cold-boot mapping-net)
(format t "-%VP ratio = -a" cm:*virtual-to-physical-processor-ratio*)
(cm-time-and-print

(cm-make-net mapping-net))

(format t "-%Allocation mode -a" (net-allocation-mode mapping-net))
(format t -%Time quantum = -a" *time-quantum*)
(format t "-%Routing table usage = -6,3f%" (*all (graph-slots-usage)))

(setf mapping-set
(cm-load-mapping-set 'mapping-set

(list
(list (make-array (* 4 m) :initial-element 1.0)

(make-array n :initial-element 1.0)))))
(cm-time-and-print

107

E. M. DEPRIT

(feed-forward mapping-net
(examplar-input-pvar (get-examplar mapping-set O))))

(cm-time-and-print
(back-propagate mapping-net

(examplar-target-pvar (get-examplar mapping-set O))))

(if (and (= n 1) (/= increment 1)) (decf n))

TIME-MEMORY-NET compiles timing statistics for the ASSOCIATIVE-MEMORY test net
up to MAX-N. INCREMENT controls granularity of the increment in net size.

(defun time-memory-net (max-n tkey (increment 1))
(cmi::calibrate-cm-timer)
(let (memory-net

memory-set)
(do ((n 1 (+ increment n)))

((> n max-n))
(setf memory-net

(fe-make-net 'memory-net
:associative-memory
(list (* 8 n) n)
0

0
'(Cl 0 25)

(0 1 25)

(format t "-3%*** N " -aa*" n)
(rmat t "%Memory net: -a units, -a connections -> a processors"

(net-no-units memory-net)
(net-no-connections memory-net)
(net-no-processors memory-net))

(cm-net-cold-boot memory-net)
(format t "-%VP ratio = -a" cm:*virtual-to-physical-processor-ratio*)
(cm-time-and-print

(cm-make-net memory-net))

(format t "%Allocation mode -a" (net-allocation-mode memory-net))
(format t "%Time quantum = -a" *time-quantum*)
(format t "%Routing table usage = -6,3f%" (*all (graph-slots-usage)))

(setf memory-set
(cm-load-memory-set 'memory-set

(list (make-array (* 8 n) :initial-element 1.0))))
(cm-time-and-print
(feed-forward memory-net (examplar-input-pvar (get-examplar memory-set O))))

(cm-time-and-print
(back-propagate memory-net (examplar-input-pvar (get-examplar memory-set O))))

(if (and (= n 1) (/= increment 1)) (decf n))

EOF

#+:ccl
(format t "-%\"Time Nets\" loaded")

108

